|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# Mamba |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This repository contains the `transfromers` compatible `mamba-2.8b`. The checkpoints are untouched, but the full `config.json` and tokenizer are pushed to this repo. |
|
|
|
# Usage |
|
|
|
You need to install `transformers` from `main` until `transformers=4.39.0` is released. |
|
```bash |
|
pip install git+https://github.com/huggingface/transformers@main |
|
``` |
|
|
|
We also recommend you to install both `causal_conv_1d` and `mamba-ssm` using: |
|
|
|
```bash |
|
pip install causal-conv1d>=1.2.0 |
|
pip install mamba-ssm |
|
``` |
|
|
|
If any of these two is not installed, the "eager" implementation will be used. Otherwise the more optimised `cuda` kernels will be used. |
|
|
|
## Generation |
|
You can use the classic `generate` API: |
|
```python |
|
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-370m-hf") |
|
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-370m-hf") |
|
input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"] |
|
|
|
out = model.generate(input_ids, max_new_tokens=10) |
|
print(tokenizer.batch_decode(out)) |
|
``` |
|
|
|
## PEFT finetuning example |
|
In order to finetune using the `peft` library, we recommend keeping the model in float32! |
|
|
|
```python |
|
from datasets import load_dataset |
|
from trl import SFTTrainer |
|
from peft import LoraConfig |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments |
|
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-370m-hf") |
|
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-370m-hf") |
|
dataset = load_dataset("Abirate/english_quotes", split="train") |
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=4, |
|
logging_dir='./logs', |
|
logging_steps=10, |
|
learning_rate=2e-3 |
|
) |
|
lora_config = LoraConfig( |
|
r=8, |
|
target_modules="all-linear", |
|
task_type="CAUSAL_LM", |
|
bias="none" |
|
) |
|
trainer = SFTTrainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
args=training_args, |
|
peft_config=lora_config, |
|
train_dataset=dataset, |
|
dataset_text_field="quote", |
|
) |
|
trainer.train() |
|
``` |