|
2023-10-23 14:59:24,306 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,307 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(64001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=25, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-23 14:59:24,307 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,307 MultiCorpus: 1100 train + 206 dev + 240 test sentences |
|
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator |
|
2023-10-23 14:59:24,307 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,307 Train: 1100 sentences |
|
2023-10-23 14:59:24,307 (train_with_dev=False, train_with_test=False) |
|
2023-10-23 14:59:24,307 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,307 Training Params: |
|
2023-10-23 14:59:24,307 - learning_rate: "5e-05" |
|
2023-10-23 14:59:24,307 - mini_batch_size: "8" |
|
2023-10-23 14:59:24,307 - max_epochs: "10" |
|
2023-10-23 14:59:24,307 - shuffle: "True" |
|
2023-10-23 14:59:24,307 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,308 Plugins: |
|
2023-10-23 14:59:24,308 - TensorboardLogger |
|
2023-10-23 14:59:24,308 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-23 14:59:24,308 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,308 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-23 14:59:24,308 - metric: "('micro avg', 'f1-score')" |
|
2023-10-23 14:59:24,308 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,308 Computation: |
|
2023-10-23 14:59:24,308 - compute on device: cuda:0 |
|
2023-10-23 14:59:24,308 - embedding storage: none |
|
2023-10-23 14:59:24,308 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,308 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-23 14:59:24,308 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,308 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:24,308 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-23 14:59:25,027 epoch 1 - iter 13/138 - loss 3.66543780 - time (sec): 0.72 - samples/sec: 3026.20 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-23 14:59:25,745 epoch 1 - iter 26/138 - loss 3.00984760 - time (sec): 1.44 - samples/sec: 2969.12 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-23 14:59:26,450 epoch 1 - iter 39/138 - loss 2.39180029 - time (sec): 2.14 - samples/sec: 2875.04 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-23 14:59:27,243 epoch 1 - iter 52/138 - loss 1.93634022 - time (sec): 2.93 - samples/sec: 2845.79 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-23 14:59:27,962 epoch 1 - iter 65/138 - loss 1.68757988 - time (sec): 3.65 - samples/sec: 2879.97 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-23 14:59:28,690 epoch 1 - iter 78/138 - loss 1.48023065 - time (sec): 4.38 - samples/sec: 2886.24 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-23 14:59:29,408 epoch 1 - iter 91/138 - loss 1.32188926 - time (sec): 5.10 - samples/sec: 2900.66 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-23 14:59:30,130 epoch 1 - iter 104/138 - loss 1.18393768 - time (sec): 5.82 - samples/sec: 2915.39 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-23 14:59:30,841 epoch 1 - iter 117/138 - loss 1.07131939 - time (sec): 6.53 - samples/sec: 2945.55 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-23 14:59:31,603 epoch 1 - iter 130/138 - loss 0.98230483 - time (sec): 7.29 - samples/sec: 2950.92 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-23 14:59:32,041 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:32,041 EPOCH 1 done: loss 0.9408 - lr: 0.000047 |
|
2023-10-23 14:59:32,466 DEV : loss 0.17025014758110046 - f1-score (micro avg) 0.7773 |
|
2023-10-23 14:59:32,472 saving best model |
|
2023-10-23 14:59:32,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:33,590 epoch 2 - iter 13/138 - loss 0.14784199 - time (sec): 0.72 - samples/sec: 2802.71 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-23 14:59:34,321 epoch 2 - iter 26/138 - loss 0.11871101 - time (sec): 1.45 - samples/sec: 2935.30 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-23 14:59:35,042 epoch 2 - iter 39/138 - loss 0.14691239 - time (sec): 2.17 - samples/sec: 2897.04 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-23 14:59:35,847 epoch 2 - iter 52/138 - loss 0.15325754 - time (sec): 2.98 - samples/sec: 2875.85 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-23 14:59:36,572 epoch 2 - iter 65/138 - loss 0.15032886 - time (sec): 3.70 - samples/sec: 2879.84 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-23 14:59:37,291 epoch 2 - iter 78/138 - loss 0.15293320 - time (sec): 4.42 - samples/sec: 2905.21 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-23 14:59:38,012 epoch 2 - iter 91/138 - loss 0.14945325 - time (sec): 5.14 - samples/sec: 2934.83 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-23 14:59:38,796 epoch 2 - iter 104/138 - loss 0.15342696 - time (sec): 5.93 - samples/sec: 2916.57 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-23 14:59:39,528 epoch 2 - iter 117/138 - loss 0.14987829 - time (sec): 6.66 - samples/sec: 2915.77 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-23 14:59:40,253 epoch 2 - iter 130/138 - loss 0.15091087 - time (sec): 7.38 - samples/sec: 2922.83 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-23 14:59:40,709 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:40,709 EPOCH 2 done: loss 0.1508 - lr: 0.000045 |
|
2023-10-23 14:59:41,247 DEV : loss 0.12781710922718048 - f1-score (micro avg) 0.8111 |
|
2023-10-23 14:59:41,252 saving best model |
|
2023-10-23 14:59:41,793 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:42,587 epoch 3 - iter 13/138 - loss 0.08645294 - time (sec): 0.79 - samples/sec: 2604.66 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-23 14:59:43,329 epoch 3 - iter 26/138 - loss 0.08482620 - time (sec): 1.53 - samples/sec: 2803.15 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-23 14:59:44,087 epoch 3 - iter 39/138 - loss 0.07421142 - time (sec): 2.29 - samples/sec: 2951.16 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-23 14:59:44,821 epoch 3 - iter 52/138 - loss 0.07684756 - time (sec): 3.02 - samples/sec: 2890.92 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-23 14:59:45,575 epoch 3 - iter 65/138 - loss 0.07988944 - time (sec): 3.78 - samples/sec: 2892.17 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-23 14:59:46,359 epoch 3 - iter 78/138 - loss 0.08173290 - time (sec): 4.56 - samples/sec: 2809.17 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-23 14:59:47,106 epoch 3 - iter 91/138 - loss 0.08449295 - time (sec): 5.31 - samples/sec: 2813.00 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-23 14:59:47,859 epoch 3 - iter 104/138 - loss 0.08365887 - time (sec): 6.06 - samples/sec: 2815.61 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-23 14:59:48,597 epoch 3 - iter 117/138 - loss 0.08635961 - time (sec): 6.80 - samples/sec: 2814.13 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-23 14:59:49,362 epoch 3 - iter 130/138 - loss 0.08894879 - time (sec): 7.57 - samples/sec: 2840.59 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-23 14:59:49,833 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:49,833 EPOCH 3 done: loss 0.0867 - lr: 0.000039 |
|
2023-10-23 14:59:50,542 DEV : loss 0.12280590832233429 - f1-score (micro avg) 0.8447 |
|
2023-10-23 14:59:50,547 saving best model |
|
2023-10-23 14:59:51,053 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:51,872 epoch 4 - iter 13/138 - loss 0.05732552 - time (sec): 0.82 - samples/sec: 2575.68 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-23 14:59:52,594 epoch 4 - iter 26/138 - loss 0.05523775 - time (sec): 1.54 - samples/sec: 2899.82 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-23 14:59:53,306 epoch 4 - iter 39/138 - loss 0.05726177 - time (sec): 2.25 - samples/sec: 2827.15 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-23 14:59:54,023 epoch 4 - iter 52/138 - loss 0.05790800 - time (sec): 2.97 - samples/sec: 2893.97 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-23 14:59:54,753 epoch 4 - iter 65/138 - loss 0.05696300 - time (sec): 3.70 - samples/sec: 2898.53 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-23 14:59:55,463 epoch 4 - iter 78/138 - loss 0.05800066 - time (sec): 4.41 - samples/sec: 2861.98 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-23 14:59:56,181 epoch 4 - iter 91/138 - loss 0.05510131 - time (sec): 5.12 - samples/sec: 2878.87 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-23 14:59:56,894 epoch 4 - iter 104/138 - loss 0.05698036 - time (sec): 5.84 - samples/sec: 2905.22 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-23 14:59:57,614 epoch 4 - iter 117/138 - loss 0.05516748 - time (sec): 6.56 - samples/sec: 2934.96 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-23 14:59:58,324 epoch 4 - iter 130/138 - loss 0.05554848 - time (sec): 7.27 - samples/sec: 2943.58 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-23 14:59:58,765 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 14:59:58,765 EPOCH 4 done: loss 0.0548 - lr: 0.000034 |
|
2023-10-23 14:59:59,315 DEV : loss 0.13340476155281067 - f1-score (micro avg) 0.8653 |
|
2023-10-23 14:59:59,320 saving best model |
|
2023-10-23 14:59:59,850 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:00,561 epoch 5 - iter 13/138 - loss 0.02190968 - time (sec): 0.71 - samples/sec: 2839.29 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-23 15:00:01,278 epoch 5 - iter 26/138 - loss 0.03255026 - time (sec): 1.42 - samples/sec: 2948.57 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-23 15:00:01,994 epoch 5 - iter 39/138 - loss 0.04017228 - time (sec): 2.14 - samples/sec: 2944.89 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-23 15:00:02,723 epoch 5 - iter 52/138 - loss 0.05156922 - time (sec): 2.87 - samples/sec: 2939.16 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-23 15:00:03,439 epoch 5 - iter 65/138 - loss 0.05092015 - time (sec): 3.58 - samples/sec: 2910.39 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-23 15:00:04,172 epoch 5 - iter 78/138 - loss 0.04808824 - time (sec): 4.32 - samples/sec: 2931.55 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-23 15:00:04,888 epoch 5 - iter 91/138 - loss 0.04539131 - time (sec): 5.03 - samples/sec: 2964.95 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-23 15:00:05,600 epoch 5 - iter 104/138 - loss 0.04367704 - time (sec): 5.75 - samples/sec: 2983.60 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-23 15:00:06,328 epoch 5 - iter 117/138 - loss 0.04343764 - time (sec): 6.47 - samples/sec: 2981.65 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-23 15:00:07,061 epoch 5 - iter 130/138 - loss 0.04444769 - time (sec): 7.21 - samples/sec: 2988.59 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-23 15:00:07,496 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:07,496 EPOCH 5 done: loss 0.0447 - lr: 0.000028 |
|
2023-10-23 15:00:08,032 DEV : loss 0.13237358629703522 - f1-score (micro avg) 0.8854 |
|
2023-10-23 15:00:08,038 saving best model |
|
2023-10-23 15:00:08,590 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:09,309 epoch 6 - iter 13/138 - loss 0.03222312 - time (sec): 0.72 - samples/sec: 3156.71 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-23 15:00:10,022 epoch 6 - iter 26/138 - loss 0.02407024 - time (sec): 1.43 - samples/sec: 2975.50 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-23 15:00:10,738 epoch 6 - iter 39/138 - loss 0.02068903 - time (sec): 2.15 - samples/sec: 3069.60 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-23 15:00:11,452 epoch 6 - iter 52/138 - loss 0.03086218 - time (sec): 2.86 - samples/sec: 3087.93 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-23 15:00:12,173 epoch 6 - iter 65/138 - loss 0.03106766 - time (sec): 3.58 - samples/sec: 3080.79 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-23 15:00:12,884 epoch 6 - iter 78/138 - loss 0.03356739 - time (sec): 4.29 - samples/sec: 3029.68 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-23 15:00:13,599 epoch 6 - iter 91/138 - loss 0.03089337 - time (sec): 5.01 - samples/sec: 3050.62 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-23 15:00:14,300 epoch 6 - iter 104/138 - loss 0.03442090 - time (sec): 5.71 - samples/sec: 3025.17 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-23 15:00:15,035 epoch 6 - iter 117/138 - loss 0.03202038 - time (sec): 6.44 - samples/sec: 3021.98 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-23 15:00:15,771 epoch 6 - iter 130/138 - loss 0.03533535 - time (sec): 7.18 - samples/sec: 3006.32 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-23 15:00:16,197 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:16,197 EPOCH 6 done: loss 0.0364 - lr: 0.000023 |
|
2023-10-23 15:00:16,729 DEV : loss 0.15275059640407562 - f1-score (micro avg) 0.8938 |
|
2023-10-23 15:00:16,735 saving best model |
|
2023-10-23 15:00:17,279 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:18,001 epoch 7 - iter 13/138 - loss 0.00527848 - time (sec): 0.72 - samples/sec: 2744.44 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-23 15:00:18,717 epoch 7 - iter 26/138 - loss 0.01820801 - time (sec): 1.44 - samples/sec: 2926.12 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-23 15:00:19,427 epoch 7 - iter 39/138 - loss 0.01831966 - time (sec): 2.15 - samples/sec: 2962.30 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-23 15:00:20,142 epoch 7 - iter 52/138 - loss 0.02742555 - time (sec): 2.86 - samples/sec: 3044.56 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-23 15:00:20,875 epoch 7 - iter 65/138 - loss 0.02380596 - time (sec): 3.59 - samples/sec: 3024.39 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-23 15:00:21,601 epoch 7 - iter 78/138 - loss 0.02668274 - time (sec): 4.32 - samples/sec: 3007.31 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-23 15:00:22,323 epoch 7 - iter 91/138 - loss 0.02478362 - time (sec): 5.04 - samples/sec: 3037.01 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-23 15:00:23,037 epoch 7 - iter 104/138 - loss 0.02409141 - time (sec): 5.76 - samples/sec: 3014.13 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-23 15:00:23,746 epoch 7 - iter 117/138 - loss 0.02390261 - time (sec): 6.46 - samples/sec: 3022.82 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-23 15:00:24,451 epoch 7 - iter 130/138 - loss 0.02278232 - time (sec): 7.17 - samples/sec: 3011.96 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-23 15:00:24,880 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:24,881 EPOCH 7 done: loss 0.0232 - lr: 0.000017 |
|
2023-10-23 15:00:25,413 DEV : loss 0.1645553708076477 - f1-score (micro avg) 0.883 |
|
2023-10-23 15:00:25,418 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:26,141 epoch 8 - iter 13/138 - loss 0.03132831 - time (sec): 0.72 - samples/sec: 3036.44 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-23 15:00:26,851 epoch 8 - iter 26/138 - loss 0.03228913 - time (sec): 1.43 - samples/sec: 3076.10 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-23 15:00:27,565 epoch 8 - iter 39/138 - loss 0.02750764 - time (sec): 2.15 - samples/sec: 2978.19 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-23 15:00:28,292 epoch 8 - iter 52/138 - loss 0.02386624 - time (sec): 2.87 - samples/sec: 3066.68 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-23 15:00:29,005 epoch 8 - iter 65/138 - loss 0.02192605 - time (sec): 3.59 - samples/sec: 3071.37 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-23 15:00:29,709 epoch 8 - iter 78/138 - loss 0.01935845 - time (sec): 4.29 - samples/sec: 3028.11 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-23 15:00:30,419 epoch 8 - iter 91/138 - loss 0.01854524 - time (sec): 5.00 - samples/sec: 3005.90 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-23 15:00:31,127 epoch 8 - iter 104/138 - loss 0.01754654 - time (sec): 5.71 - samples/sec: 3037.43 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-23 15:00:31,844 epoch 8 - iter 117/138 - loss 0.01644821 - time (sec): 6.42 - samples/sec: 3044.82 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-23 15:00:32,546 epoch 8 - iter 130/138 - loss 0.01595208 - time (sec): 7.13 - samples/sec: 3027.96 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-23 15:00:32,977 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:32,977 EPOCH 8 done: loss 0.0162 - lr: 0.000012 |
|
2023-10-23 15:00:33,512 DEV : loss 0.16538017988204956 - f1-score (micro avg) 0.8924 |
|
2023-10-23 15:00:33,517 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:34,230 epoch 9 - iter 13/138 - loss 0.02788626 - time (sec): 0.71 - samples/sec: 2745.49 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-23 15:00:34,951 epoch 9 - iter 26/138 - loss 0.01954824 - time (sec): 1.43 - samples/sec: 3002.40 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-23 15:00:35,659 epoch 9 - iter 39/138 - loss 0.01360116 - time (sec): 2.14 - samples/sec: 2984.85 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-23 15:00:36,369 epoch 9 - iter 52/138 - loss 0.01102750 - time (sec): 2.85 - samples/sec: 2994.57 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-23 15:00:37,087 epoch 9 - iter 65/138 - loss 0.01089929 - time (sec): 3.57 - samples/sec: 3021.95 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-23 15:00:37,808 epoch 9 - iter 78/138 - loss 0.01437039 - time (sec): 4.29 - samples/sec: 3072.07 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-23 15:00:38,526 epoch 9 - iter 91/138 - loss 0.01440842 - time (sec): 5.01 - samples/sec: 3068.49 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-23 15:00:39,241 epoch 9 - iter 104/138 - loss 0.01322011 - time (sec): 5.72 - samples/sec: 3013.70 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-23 15:00:39,951 epoch 9 - iter 117/138 - loss 0.01204757 - time (sec): 6.43 - samples/sec: 2979.71 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-23 15:00:40,696 epoch 9 - iter 130/138 - loss 0.01145643 - time (sec): 7.18 - samples/sec: 3030.74 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-23 15:00:41,121 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:41,121 EPOCH 9 done: loss 0.0113 - lr: 0.000006 |
|
2023-10-23 15:00:41,656 DEV : loss 0.17684748768806458 - f1-score (micro avg) 0.8894 |
|
2023-10-23 15:00:41,661 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:42,380 epoch 10 - iter 13/138 - loss 0.00794737 - time (sec): 0.72 - samples/sec: 2884.96 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-23 15:00:43,098 epoch 10 - iter 26/138 - loss 0.00943552 - time (sec): 1.44 - samples/sec: 2951.74 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-23 15:00:43,822 epoch 10 - iter 39/138 - loss 0.00724063 - time (sec): 2.16 - samples/sec: 2948.75 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-23 15:00:44,535 epoch 10 - iter 52/138 - loss 0.00610859 - time (sec): 2.87 - samples/sec: 2948.72 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-23 15:00:45,237 epoch 10 - iter 65/138 - loss 0.00718335 - time (sec): 3.58 - samples/sec: 2912.38 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-23 15:00:45,949 epoch 10 - iter 78/138 - loss 0.00609465 - time (sec): 4.29 - samples/sec: 2974.64 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-23 15:00:46,661 epoch 10 - iter 91/138 - loss 0.00724821 - time (sec): 5.00 - samples/sec: 2992.73 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-23 15:00:47,375 epoch 10 - iter 104/138 - loss 0.00669768 - time (sec): 5.71 - samples/sec: 3002.23 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-23 15:00:48,096 epoch 10 - iter 117/138 - loss 0.01007155 - time (sec): 6.43 - samples/sec: 3012.47 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-23 15:00:48,811 epoch 10 - iter 130/138 - loss 0.00905841 - time (sec): 7.15 - samples/sec: 3019.54 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-23 15:00:49,255 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:49,256 EPOCH 10 done: loss 0.0087 - lr: 0.000000 |
|
2023-10-23 15:00:49,787 DEV : loss 0.17404906451702118 - f1-score (micro avg) 0.8951 |
|
2023-10-23 15:00:49,792 saving best model |
|
2023-10-23 15:00:50,737 ---------------------------------------------------------------------------------------------------- |
|
2023-10-23 15:00:50,738 Loading model from best epoch ... |
|
2023-10-23 15:00:52,533 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date |
|
2023-10-23 15:00:53,190 |
|
Results: |
|
- F-score (micro) 0.9026 |
|
- F-score (macro) 0.8381 |
|
- Accuracy 0.8407 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
scope 0.8876 0.8977 0.8927 176 |
|
pers 1.0000 0.9297 0.9636 128 |
|
work 0.8182 0.8514 0.8344 74 |
|
object 1.0000 1.0000 1.0000 2 |
|
loc 0.5000 0.5000 0.5000 2 |
|
|
|
micro avg 0.9074 0.8979 0.9026 382 |
|
macro avg 0.8412 0.8358 0.8381 382 |
|
weighted avg 0.9104 0.8979 0.9036 382 |
|
|
|
2023-10-23 15:00:53,190 ---------------------------------------------------------------------------------------------------- |
|
|