whisper-small-shona / README.md
steja's picture
shona whisper small ft
b66d2b8
|
raw
history blame
2.11 kB
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper_small_Shona
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: sn_zw
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 50.85625

Whisper_small_Shona

This model is a fine-tuned version of openai/whisper-small on the google/fleurs sn_zw dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1174
  • Wer: 50.8563

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0054 33.32 400 0.9826 51.6687
0.0009 66.64 800 1.0774 50.9062
0.0005 99.96 1200 1.1174 50.8563
0.0003 133.32 1600 1.1388 50.875
0.0003 166.64 2000 1.1461 50.925

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2