|
--- |
|
language: |
|
- te |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-telugu |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: te_in |
|
split: test |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 39.67740444608772 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-telugu |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. |
|
It achieves the following results on the evaluation set (google/flerus telugu test set): |
|
- Loss: 0.3622 |
|
- Wer: 39.6774 |
|
|
|
[openai/whisper-small](https://huggingface.co/openai/whisper-small) has the following zero shot performance on google/fleurs test set: |
|
|
|
- Wer: 117.91 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.2623 | 1.55 | 500 | 0.2733 | 65.9750 | |
|
| 0.0859 | 3.1 | 1000 | 0.2045 | 39.7652 | |
|
| 0.0538 | 4.64 | 1500 | 0.2220 | 42.3811 | |
|
| 0.0265 | 6.19 | 2000 | 0.2526 | 42.3626 | |
|
| 0.0179 | 7.74 | 2500 | 0.2754 | 42.1685 | |
|
| 0.008 | 9.29 | 3000 | 0.2966 | 41.2257 | |
|
| 0.0061 | 10.83 | 3500 | 0.2950 | 40.6202 | |
|
| 0.0034 | 12.38 | 4000 | 0.3049 | 40.3198 | |
|
| 0.004 | 13.93 | 4500 | 0.3106 | 40.5879 | |
|
| 0.0018 | 15.48 | 5000 | 0.3199 | 40.1812 | |
|
| 0.0016 | 17.03 | 5500 | 0.3346 | 39.8345 | |
|
| 0.0006 | 18.57 | 6000 | 0.3337 | 40.2274 | |
|
| 0.0003 | 20.12 | 6500 | 0.3396 | 40.2597 | |
|
| 0.0005 | 21.67 | 7000 | 0.3465 | 40.1072 | |
|
| 0.0002 | 23.22 | 7500 | 0.3485 | 39.7282 | |
|
| 0.0002 | 24.77 | 8000 | 0.3519 | 39.7837 | |
|
| 0.0001 | 26.32 | 8500 | 0.3567 | 39.7560 | |
|
| 0.0001 | 27.86 | 9000 | 0.3614 | 39.8068 | |
|
| 0.0 | 29.41 | 9500 | 0.3609 | 39.4925 | |
|
| 0.0 | 30.96 | 10000 | 0.3622 | 39.6774 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|