|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- PandaReachDense-v3 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: PandaReachDense-v3 |
|
type: PandaReachDense-v3 |
|
metrics: |
|
- type: mean_reward |
|
value: -0.22 +/- 0.12 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **PPO** Agent playing **PandaReachDense-v3** |
|
This is a trained model of a **PPO** agent playing **PandaReachDense-v3** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
TODO: Add your code |
|
|
|
|
|
```python |
|
|
|
from stable_baselines3 import PPO |
|
from huggingface_sb3 import load_from_hub, package_to_hub |
|
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize |
|
|
|
env_id = "PandaReachDense-v3" |
|
env = gym.make(env_id) |
|
env = make_vec_env(env_id, n_envs=4) |
|
env = VecNormalize(env, training=True, norm_obs=True, norm_reward=True, gamma=0.5, epsilon=1e-10, norm_obs_keys=None) |
|
|
|
model = PPO("MultiInputPolicy", env, verbose=1) |
|
model.learn(1_000_000) |
|
|
|
eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")]) |
|
eval_env = VecNormalize.load("vec_normalize.pkl", eval_env) |
|
eval_env.render_mode = "rgb_array" |
|
eval_env.training = False |
|
# reward normalization is not needed at test time |
|
eval_env.norm_reward = False |
|
|
|
|
|
model = PPO.load("Slay-PandaReachDense-v3") |
|
mean_reward, std_reward = evaluate_policy(model, eval_env) |
|
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") |
|
... |
|
``` |
|
|