strickvl's picture
End of training
d594dc7 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - axolotl
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: isafpr-mistral-lora-templatefree
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

data_seed: 42
seed: 42

datasets:
  - path: data/templatefree_isaf_press_releases_ft_train.jsonl
    type: input_output
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./outputs/mistral/lora-out-templatefree
hub_model_id: strickvl/isafpr-mistral-lora-templatefree


sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"

isafpr-mistral-lora-templatefree

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.5339 0.0131 1 1.5408
0.0671 0.2492 19 0.0549
0.037 0.4984 38 0.0406
0.0424 0.7475 57 0.0361
0.035 0.9967 76 0.0351
0.0322 1.2295 95 0.0336
0.0247 1.4787 114 0.0314
0.0229 1.7279 133 0.0313
0.0241 1.9770 152 0.0299
0.0222 2.2098 171 0.0307
0.0183 2.4590 190 0.0296
0.0205 2.7082 209 0.0291
0.0153 2.9574 228 0.0281
0.0162 3.1902 247 0.0286
0.0126 3.4393 266 0.0290
0.0147 3.6885 285 0.0287
0.0157 3.9377 304 0.0288

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1