model documentation
#2
by
nazneen
- opened
README.md
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
|
3 |
+
license: apache-2.0
|
4 |
+
|
5 |
+
---
|
6 |
+
# Model Card for luke-large-finetuned-conll-2003
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
# Model Details
|
11 |
+
|
12 |
+
## Model Description
|
13 |
+
|
14 |
+
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pretrained contextualized representation of words and entities based on transformer.
|
15 |
+
|
16 |
+
- **Developed by:** Studio Ousi
|
17 |
+
- **Shared by [Optional]:** More information needed
|
18 |
+
- **Model type:** EntitySpanClassification
|
19 |
+
- **Language(s) (NLP):** More information needed
|
20 |
+
- **License:** Apache-2.0
|
21 |
+
- **Related Models:** [Luke-large](https://huggingface.co/studio-ousia/luke-large?text=Paris+is+the+%3Cmask%3E+of+France.)
|
22 |
+
- **Parent Model:** Luke
|
23 |
+
- **Resources for more information:**
|
24 |
+
- [GitHub Repo](https://github.com/studio-ousia/luke)
|
25 |
+
- [Associated Paper](https://arxiv.org/abs/2010.01057)
|
26 |
+
|
27 |
+
# Uses
|
28 |
+
|
29 |
+
|
30 |
+
## Direct Use
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Downstream Use [Optional]
|
35 |
+
|
36 |
+
This model can also be used for the task of named entity recognition, cloze-style question answering, fine-grained entity typing, extractive question answering.
|
37 |
+
|
38 |
+
## Out-of-Scope Use
|
39 |
+
|
40 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
41 |
+
|
42 |
+
# Bias, Risks, and Limitations
|
43 |
+
|
44 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
45 |
+
|
46 |
+
|
47 |
+
## Recommendations
|
48 |
+
|
49 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
50 |
+
|
51 |
+
|
52 |
+
# Training Details
|
53 |
+
|
54 |
+
## Training Data
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training Procedure
|
59 |
+
|
60 |
+
|
61 |
+
### Preprocessing
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
### Speeds, Sizes, Times
|
66 |
+
|
67 |
+
More information needed
|
68 |
+
|
69 |
+
# Evaluation
|
70 |
+
|
71 |
+
|
72 |
+
## Testing Data, Factors & Metrics
|
73 |
+
|
74 |
+
### Testing Data
|
75 |
+
|
76 |
+
More information needed
|
77 |
+
|
78 |
+
### Factors
|
79 |
+
|
80 |
+
|
81 |
+
### Metrics
|
82 |
+
|
83 |
+
LUKE achieves state-of-the-art results on five popular NLP benchmarks including
|
84 |
+
* **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive
|
85 |
+
question answering),
|
86 |
+
* **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity
|
87 |
+
recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)**
|
88 |
+
(cloze-style question answering),
|
89 |
+
* **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation
|
90 |
+
classification), and
|
91 |
+
* **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing).
|
92 |
+
|
93 |
+
## Results
|
94 |
+
|
95 |
+
The experimental results are provided as follows:
|
96 |
+
|
97 |
+
| Task | Dataset | Metric | LUKE-large | luke-base | Previous SOTA |
|
98 |
+
| ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- |
|
99 |
+
| Extractive Question Answering | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) | EM/F1 | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237)) |
|
100 |
+
| Named Entity Recognition | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/) | F1 | **94.3** | 93.3 | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785)) |
|
101 |
+
| Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/) | EM/F1 | **90.6**/**91.2** | - | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) |
|
102 |
+
| Relation Classification | [TACRED](https://nlp.stanford.edu/projects/tacred/) | F1 | **72.7** | - | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) |
|
103 |
+
| Fine-grained Entity Typing | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1 | **78.2** | - | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) |
|
104 |
+
|
105 |
+
|
106 |
+
Please check the [Github repository](https://github.com/studio-ousia/luke) for more details and updates.
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
# Model Examination
|
111 |
+
|
112 |
+
More information needed
|
113 |
+
|
114 |
+
# Environmental Impact
|
115 |
+
|
116 |
+
|
117 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
118 |
+
|
119 |
+
- **Hardware Type:** More information needed
|
120 |
+
- **Hours used:** More information needed
|
121 |
+
- **Cloud Provider:** More information needed
|
122 |
+
- **Compute Region:** More information needed
|
123 |
+
- **Carbon Emitted:** More information needed
|
124 |
+
|
125 |
+
# Technical Specifications [optional]
|
126 |
+
|
127 |
+
## Model Architecture and Objective
|
128 |
+
|
129 |
+
More information needed
|
130 |
+
|
131 |
+
## Compute Infrastructure
|
132 |
+
|
133 |
+
More information needed
|
134 |
+
|
135 |
+
### Hardware
|
136 |
+
|
137 |
+
* transformers_version: 4.6.0.dev0
|
138 |
+
|
139 |
+
### Software
|
140 |
+
More information needed
|
141 |
+
|
142 |
+
# Citation
|
143 |
+
|
144 |
+
|
145 |
+
**BibTeX:**
|
146 |
+
```
|
147 |
+
@inproceedings{yamada2020luke,
|
148 |
+
title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
|
149 |
+
author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
|
150 |
+
booktitle={EMNLP},
|
151 |
+
year={2020}
|
152 |
+
}
|
153 |
+
```
|
154 |
+
|
155 |
+
|
156 |
+
# Glossary [optional]
|
157 |
+
More information needed
|
158 |
+
|
159 |
+
# More Information [optional]
|
160 |
+
|
161 |
+
More information needed
|
162 |
+
|
163 |
+
# Model Card Authors [optional]
|
164 |
+
|
165 |
+
|
166 |
+
Studio Ousi in collaboration with Ezi Ozoani and the Hugging Face team
|
167 |
+
|
168 |
+
# Model Card Contact
|
169 |
+
|
170 |
+
More information needed
|
171 |
+
|
172 |
+
# How to Get Started with the Model
|
173 |
+
|
174 |
+
Use the code below to get started with the model.
|
175 |
+
|
176 |
+
<details>
|
177 |
+
<summary> Click to expand </summary>
|
178 |
+
|
179 |
+
```python
|
180 |
+
from transformers import AutoTokenizer, LukeForEntitySpanClassification
|
181 |
+
|
182 |
+
tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
|
183 |
+
|
184 |
+
model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
|
185 |
+
```
|
186 |
+
</details>
|
187 |
+
|