exper_batch_32_e8
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3520
- Accuracy: 0.9113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Apex, opt level O1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.3787 | 0.31 | 100 | 3.3100 | 0.3566 |
2.3975 | 0.62 | 200 | 2.3196 | 0.5717 |
1.5578 | 0.94 | 300 | 1.6764 | 0.6461 |
1.0291 | 1.25 | 400 | 1.1713 | 0.7463 |
0.8185 | 1.56 | 500 | 0.9292 | 0.7953 |
0.6181 | 1.88 | 600 | 0.7732 | 0.8169 |
0.3873 | 2.19 | 700 | 0.6877 | 0.8277 |
0.2979 | 2.5 | 800 | 0.6250 | 0.8404 |
0.2967 | 2.81 | 900 | 0.6151 | 0.8365 |
0.1874 | 3.12 | 1000 | 0.5401 | 0.8608 |
0.2232 | 3.44 | 1100 | 0.5032 | 0.8712 |
0.1109 | 3.75 | 1200 | 0.4635 | 0.8774 |
0.0539 | 4.06 | 1300 | 0.4495 | 0.8843 |
0.0668 | 4.38 | 1400 | 0.4273 | 0.8951 |
0.0567 | 4.69 | 1500 | 0.4427 | 0.8867 |
0.0285 | 5.0 | 1600 | 0.4092 | 0.8955 |
0.0473 | 5.31 | 1700 | 0.3720 | 0.9071 |
0.0225 | 5.62 | 1800 | 0.3691 | 0.9063 |
0.0196 | 5.94 | 1900 | 0.3775 | 0.9048 |
0.0173 | 6.25 | 2000 | 0.3641 | 0.9040 |
0.0092 | 6.56 | 2100 | 0.3551 | 0.9090 |
0.008 | 6.88 | 2200 | 0.3591 | 0.9125 |
0.0072 | 7.19 | 2300 | 0.3542 | 0.9121 |
0.007 | 7.5 | 2400 | 0.3532 | 0.9106 |
0.007 | 7.81 | 2500 | 0.3520 | 0.9113 |
Framework versions
- Transformers 4.19.4
- Pytorch 1.5.1
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.