phi-3-mini-QLoRA / README.md
sujithatz's picture
sujithatz/finbot-transofrmer-based-phi3.5_adapter
6afdc4f verified
|
raw
history blame
2.69 kB
metadata
base_model: microsoft/Phi-3-mini-4k-instruct
library_name: peft
license: mit
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: phi-3-mini-QLoRA
    results: []

phi-3-mini-QLoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
1.415 1.1765 5 1.4148
1.2791 2.3529 10 1.2542
1.0303 3.5294 15 0.9828
0.7989 4.7059 20 0.7193
0.5792 5.8824 25 0.5793
0.5074 7.0588 30 0.5133
0.4558 8.2353 35 0.4714
0.361 9.4118 40 0.4478
0.3751 10.5882 45 0.4236
0.2908 11.7647 50 0.4106
0.263 12.9412 55 0.3855
0.2515 14.1176 60 0.3760
0.2391 15.2941 65 0.3752
0.1973 16.4706 70 0.3723
0.1638 17.6471 75 0.3740
0.1776 18.8235 80 0.3868
0.2008 20.0 85 0.3798
0.1569 21.1765 90 0.3848
0.1284 22.3529 95 0.3901
0.1171 23.5294 100 0.3969
0.1364 24.7059 105 0.3950
0.1401 25.8824 110 0.4070
0.1195 27.0588 115 0.4091
0.1219 28.2353 120 0.4084

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0