sulaimank's picture
End of training
521f742 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-cv-grain-lg_cv_only
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: lg
          split: test[:10%]
          args: lg
        metrics:
          - name: Wer
            type: wer
            value: 0.5799642969652421

w2v-bert-cv-grain-lg_cv_only

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5800
  • Cer: 0.1379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.5013 1.0 2221 inf 0.2789 0.0724
0.299 2.0 4442 inf 0.2501 0.0648
0.2554 3.0 6663 inf 0.2435 0.0685
0.2411 4.0 8884 inf 0.2447 0.0648
0.2886 5.0 11105 inf 0.2506 0.0654
0.3923 6.0 13326 inf 0.4237 0.1108
2.1779 7.0 15547 inf 0.5612 0.1439
4.5629 8.0 17768 inf 0.5152 0.1379
2.236 9.0 19989 inf 0.5787 0.1384
2.2033 10.0 22210 inf 0.5742 0.1375
2.2047 11.0 24431 inf 0.5784 0.1382
2.2057 12.0 26652 inf 0.5805 0.1390
2.2076 13.0 28873 inf 0.5800 0.1379

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1