Edit model card

w

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Grain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0469
  • Wer: 0.0299
  • Cer: 0.0077

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2995 1.0 1164 0.1521 0.1390 0.0283
0.1049 2.0 2328 0.0931 0.0946 0.0189
0.0719 3.0 3492 0.0861 0.0902 0.0183
0.0546 4.0 4656 0.0788 0.0704 0.0166
0.0447 5.0 5820 0.0609 0.0627 0.0135
0.0374 6.0 6984 0.0744 0.0618 0.0141
0.0338 7.0 8148 0.0673 0.0535 0.0137
0.029 8.0 9312 0.0770 0.0540 0.0128
0.0278 9.0 10476 0.0565 0.0482 0.0116
0.0227 10.0 11640 0.0516 0.0500 0.0115
0.0211 11.0 12804 0.0457 0.0392 0.0096
0.0207 12.0 13968 0.0527 0.0452 0.0098
0.0179 13.0 15132 0.0463 0.0370 0.0089
0.017 14.0 16296 0.0530 0.0452 0.0109
0.0167 15.0 17460 0.0447 0.0360 0.0091
0.0141 16.0 18624 0.0529 0.0434 0.0104
0.015 17.0 19788 0.0410 0.0387 0.0090
0.0141 18.0 20952 0.0480 0.0416 0.0102
0.0136 19.0 22116 0.0472 0.0368 0.0087
0.0125 20.0 23280 0.0428 0.0380 0.0091
0.0117 21.0 24444 0.0375 0.0328 0.0081
0.0113 22.0 25608 0.0392 0.0312 0.0083
0.0093 23.0 26772 0.0554 0.0394 0.0102
0.0111 24.0 27936 0.0624 0.0452 0.0108
0.0107 25.0 29100 0.0390 0.0346 0.0076
0.0082 26.0 30264 0.0505 0.0426 0.0101
0.0087 27.0 31428 0.0430 0.0320 0.0081
0.0086 28.0 32592 0.0541 0.0398 0.0101
0.0079 29.0 33756 0.0404 0.0304 0.0070
0.0084 30.0 34920 0.0416 0.0315 0.0075
0.0084 31.0 36084 0.0495 0.0366 0.0092
0.0075 32.0 37248 0.0469 0.0299 0.0077

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sulaimank/w2v-bert-grain-lg-v2

Finetuned
(185)
this model

Evaluation results