SpanMarker
This is a SpanMarker model trained on the SpeedOfMagic/ontonotes_english dataset that can be used for Named Entity Recognition.
Model Details
Model Description
- Model Type: SpanMarker
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 8 words
- Training Dataset: SpeedOfMagic/ontonotes_english
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
CARDINAL | "tens of thousands", "One point three million", "two" |
DATE | "Sunday", "a year", "two thousand one" |
EVENT | "World War Two", "Katrina", "Hurricane Katrina" |
FAC | "Route 80", "the White House", "Dylan 's Candy Bars" |
GPE | "America", "Atlanta", "Miami" |
LANGUAGE | "English", "Russian", "Arabic" |
LAW | "Roe", "the Patriot Act", "FISA" |
LOC | "Asia", "the Gulf Coast", "the West Bank" |
MONEY | "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars" |
NORP | "American", "Muslim", "Americans" |
ORDINAL | "third", "First", "first" |
ORG | "Wal - Mart", "Wal - Mart 's", "a Wal - Mart" |
PERCENT | "seventeen percent", "sixty - seven percent", "a hundred percent" |
PERSON | "Kira Phillips", "Rick Sanchez", "Bob Shapiro" |
PRODUCT | "Columbia", "Discovery Shuttle", "Discovery" |
QUANTITY | "forty - five miles", "six thousand feet", "a hundred and seventy pounds" |
TIME | "tonight", "evening", "Tonight" |
WORK_OF_ART | "A Tale of Two Cities", "Newsnight", "Headline News" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.9046 | 0.9109 | 0.9077 |
CARDINAL | 0.8579 | 0.8524 | 0.8552 |
DATE | 0.8634 | 0.8893 | 0.8762 |
EVENT | 0.6719 | 0.6935 | 0.6825 |
FAC | 0.7211 | 0.7852 | 0.7518 |
GPE | 0.9725 | 0.9647 | 0.9686 |
LANGUAGE | 0.9286 | 0.5909 | 0.7222 |
LAW | 0.7941 | 0.7297 | 0.7606 |
LOC | 0.7632 | 0.8101 | 0.7859 |
MONEY | 0.8914 | 0.8885 | 0.8900 |
NORP | 0.9311 | 0.9643 | 0.9474 |
ORDINAL | 0.8227 | 0.9282 | 0.8723 |
ORG | 0.9217 | 0.9073 | 0.9145 |
PERCENT | 0.9145 | 0.9198 | 0.9171 |
PERSON | 0.9638 | 0.9643 | 0.9640 |
PRODUCT | 0.6778 | 0.8026 | 0.7349 |
QUANTITY | 0.7850 | 0.8 | 0.7925 |
TIME | 0.6794 | 0.6730 | 0.6762 |
WORK_OF_ART | 0.6562 | 0.6442 | 0.6502 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
# Run inference
entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 18.1647 | 210 |
Entities per sentence | 0 | 1.3655 | 32 |
Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Framework Versions
- Python: 3.10.13
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 553
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train supreethrao/instructNER_ontonotes5_xl
Evaluation results
- F1 on Unknowntest set self-reported0.908
- Precision on Unknowntest set self-reported0.905
- Recall on Unknowntest set self-reported0.911