dipteshkanojia's picture
Update README.md
a535608
|
raw
history blame
3.49 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - surrey-nlp/PLOD-unfiltered
metrics:
  - precision
  - recall
  - f1
  - accuracy
language:
  - en
widget:
  - text: >-
      Light dissolved inorganic carbon (DIC) resulting from the oxidation of
      hydrocarbons.
  - text: >-
      RAFs are plotted for a selection of neurons in the dorsal zone (DZ) of
      auditory cortex in Figure 1.
  - text: >-
      Images were acquired using a GE 3.0T MRI scanner with an upgrade for
      echo-planar imaging (EPI).
model-index:
  - name: albert-large-v2-finetuned-ner_with_callbacks
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: surrey-nlp/PLOD-unfiltered
          type: token-classification
          args: PLODunfiltered
        metrics:
          - name: Precision
            type: precision
            value: 0.9655166719570215
          - name: Recall
            type: recall
            value: 0.9608483288141474
          - name: F1
            type: f1
            value: 0.9631768437660728
          - name: Accuracy
            type: accuracy
            value: 0.9589410429715819

albert-large-v2-finetuned-ner_with_callbacks

This model is a fine-tuned version of albert-large-v2 on the PLOD-unfiltered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1235
  • Precision: 0.9655
  • Recall: 0.9608
  • F1: 0.9632
  • Accuracy: 0.9589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1377 0.49 7000 0.1294 0.9563 0.9422 0.9492 0.9436
0.1244 0.98 14000 0.1165 0.9589 0.9504 0.9546 0.9499
0.107 1.48 21000 0.1140 0.9603 0.9509 0.9556 0.9511
0.1088 1.97 28000 0.1086 0.9613 0.9551 0.9582 0.9536
0.0918 2.46 35000 0.1059 0.9617 0.9582 0.9600 0.9556
0.0847 2.95 42000 0.1067 0.9620 0.9586 0.9603 0.9559
0.0734 3.44 49000 0.1188 0.9646 0.9588 0.9617 0.9574
0.0725 3.93 56000 0.1065 0.9660 0.9599 0.9630 0.9588
0.0547 4.43 63000 0.1273 0.9662 0.9602 0.9632 0.9590
0.0542 4.92 70000 0.1235 0.9655 0.9608 0.9632 0.9589
0.0374 5.41 77000 0.1401 0.9647 0.9613 0.9630 0.9586
0.0417 5.9 84000 0.1380 0.9641 0.9622 0.9632 0.9588

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.1+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1