Edit model card

whisper-a-nomimo

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0351
  • Wer: 22.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9699 0.9662 100 0.1287 46.6821
0.1644 1.9275 200 0.1624 445.0617
0.236 2.8889 300 0.0895 23.1481
0.0518 3.8502 400 0.0479 18.4414
0.0321 4.8116 500 0.0426 14.8148
0.03 5.7729 600 0.0482 19.4444
0.0218 6.7343 700 0.0325 11.6512
0.0143 7.6957 800 0.0439 15.2778
0.0147 8.6570 900 0.0339 11.9599
0.0104 9.6184 1000 0.0391 14.5833
0.0079 10.5797 1100 0.0338 33.9506
0.0054 11.5411 1200 0.0293 20.4475
0.0032 12.5024 1300 0.0357 14.3519
0.002 13.4638 1400 0.0327 18.0556
0.0023 14.4251 1500 0.0351 22.9167

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
23
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/whisper-a-nomimo

Finetuned
(1967)
this model