finetune_colpali_v1_2-german_ver3-4bit
This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the German_docx dataset. It achieves the following results on the evaluation set:
- Loss: 0.0992
- Model Preparation Time: 0.007
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
---|---|---|---|---|
No log | 0.0146 | 1 | 0.3248 | 0.007 |
1.8501 | 0.1460 | 10 | 0.3090 | 0.007 |
1.3107 | 0.2920 | 20 | 0.2642 | 0.007 |
0.9799 | 0.4380 | 30 | 0.2404 | 0.007 |
0.6309 | 0.5839 | 40 | 0.2107 | 0.007 |
0.9043 | 0.7299 | 50 | 0.1864 | 0.007 |
1.015 | 0.8759 | 60 | 0.1617 | 0.007 |
0.9035 | 1.0219 | 70 | 0.1585 | 0.007 |
0.6689 | 1.1679 | 80 | 0.1586 | 0.007 |
0.3336 | 1.3139 | 90 | 0.1477 | 0.007 |
0.377 | 1.4599 | 100 | 0.1408 | 0.007 |
0.5013 | 1.6058 | 110 | 0.1442 | 0.007 |
0.2791 | 1.7518 | 120 | 0.1277 | 0.007 |
0.3665 | 1.8978 | 130 | 0.1164 | 0.007 |
0.4709 | 2.0438 | 140 | 0.1106 | 0.007 |
0.2456 | 2.1898 | 150 | 0.1061 | 0.007 |
0.152 | 2.3358 | 160 | 0.1045 | 0.007 |
0.1813 | 2.4818 | 170 | 0.1007 | 0.007 |
0.1594 | 2.6277 | 180 | 0.1010 | 0.007 |
0.1856 | 2.7737 | 190 | 0.1005 | 0.007 |
0.1788 | 2.9197 | 200 | 0.0992 | 0.007 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.3.1
- Datasets 3.1.0
- Tokenizers 0.20.1
Model tree for svenbl80/finetune_colpali_v1_2-german_ver3-4bit
Base model
google/paligemma-3b-pt-448
Finetuned
vidore/colpaligemma-3b-pt-448-base