Edit model card

finetune_colpali_v1_2-german_ver3-4bit

This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the German_docx dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0992
  • Model Preparation Time: 0.007

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
No log 0.0146 1 0.3248 0.007
1.8501 0.1460 10 0.3090 0.007
1.3107 0.2920 20 0.2642 0.007
0.9799 0.4380 30 0.2404 0.007
0.6309 0.5839 40 0.2107 0.007
0.9043 0.7299 50 0.1864 0.007
1.015 0.8759 60 0.1617 0.007
0.9035 1.0219 70 0.1585 0.007
0.6689 1.1679 80 0.1586 0.007
0.3336 1.3139 90 0.1477 0.007
0.377 1.4599 100 0.1408 0.007
0.5013 1.6058 110 0.1442 0.007
0.2791 1.7518 120 0.1277 0.007
0.3665 1.8978 130 0.1164 0.007
0.4709 2.0438 140 0.1106 0.007
0.2456 2.1898 150 0.1061 0.007
0.152 2.3358 160 0.1045 0.007
0.1813 2.4818 170 0.1007 0.007
0.1594 2.6277 180 0.1010 0.007
0.1856 2.7737 190 0.1005 0.007
0.1788 2.9197 200 0.0992 0.007

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.3.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for svenbl80/finetune_colpali_v1_2-german_ver3-4bit

Finetuned
(20)
this model