hindi-clsril-100
Fine-tuned Harveenchadha/wav2vec2-pretrained-clsril-23-10k on Hindi using the Common Voice, included openSLR Hindi dataset. When using this model, make sure that your speech input is sampled at 16kHz.
Evaluation
The model can be used directly (with or without a language model) as follows:
#!pip install datasets==1.4.1
#!pip install transformers==4.4.0
#!pip install torchaudio
#!pip install jiwer
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM
processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained("swayam01/hindi-clsril-100")
model = Wav2Vec2ForCTC.from_pretrained("swayam01/hindi-clsril-100")
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\�\।\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor_with_lm(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
batch["pred_strings"] = transcription = processor_with_lm.batch_decode(logits.numpy()).text
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 24.17 %
Training
The Common Voice hi train
, validation
were used for training, as well as openSLR hi train
, validation
and test
datasets.
The script used for training can be found here colab
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.