Edit model card

XLM-RoBERTa-Base-Conll2003-English-NER-Finetune-BinaryClass-WeightedLoss

This model is a fine-tuned version of xlm-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1110
  • Precision: 0.9525
  • Recall: 0.9660
  • F1: 0.9592
  • Accuracy: 0.9907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3351 0.3333 1441 0.1107 0.9131 0.9377 0.9252 0.9814
0.0357 0.6667 2882 0.0501 0.9500 0.9446 0.9473 0.9882
0.0239 1.0 4323 0.0662 0.9481 0.9479 0.9480 0.9883
0.0178 1.3333 5764 0.0667 0.9489 0.9603 0.9546 0.9899
0.0188 1.6667 7205 0.0712 0.9488 0.9575 0.9531 0.9895
0.018 2.0 8646 0.0605 0.9524 0.9559 0.9541 0.9902
0.0119 2.3333 10087 0.0840 0.9487 0.9662 0.9574 0.9901
0.0124 2.6667 11528 0.0758 0.9486 0.9641 0.9563 0.9901
0.0112 3.0 12969 0.0664 0.9559 0.9628 0.9593 0.9910
0.0082 3.3333 14410 0.0939 0.9483 0.9603 0.9543 0.9899
0.0083 3.6667 15851 0.0681 0.9555 0.9591 0.9573 0.9907
0.0077 4.0 17292 0.0686 0.9555 0.9572 0.9563 0.9902
0.0055 4.3333 18733 0.0852 0.9498 0.9642 0.9569 0.9905
0.005 4.6667 20174 0.0795 0.9530 0.9653 0.9591 0.9907
0.0049 5.0 21615 0.0871 0.9526 0.9614 0.9570 0.9900
0.0042 5.3333 23056 0.1054 0.9482 0.9658 0.9569 0.9898
0.0045 5.6667 24497 0.0764 0.9559 0.9598 0.9579 0.9905
0.0043 6.0 25938 0.0996 0.9510 0.9662 0.9585 0.9905
0.0037 6.3333 27379 0.0909 0.9539 0.9641 0.9590 0.9908
0.003 6.6667 28820 0.1010 0.9519 0.9639 0.9579 0.9905
0.003 7.0 30261 0.0944 0.9510 0.9632 0.9571 0.9905
0.0037 7.3333 31702 0.1041 0.9514 0.9642 0.9578 0.9903
0.0021 7.6667 33143 0.1048 0.9520 0.9658 0.9589 0.9907
0.0029 8.0 34584 0.1001 0.9526 0.9651 0.9588 0.9907
0.0019 8.3333 36025 0.1098 0.9525 0.9653 0.9588 0.9906
0.0019 8.6667 37466 0.1027 0.9538 0.9651 0.9594 0.9906
0.0019 9.0 38907 0.0990 0.9543 0.9653 0.9598 0.9908
0.0018 9.3333 40348 0.1086 0.9537 0.9655 0.9595 0.9907
0.0014 9.6667 41789 0.1090 0.9533 0.9658 0.9595 0.9907
0.0014 10.0 43230 0.1110 0.9525 0.9660 0.9592 0.9907

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
277M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for swtb/XLM-RoBERTa-Base-Conll2003-English-NER-Finetune-BinaryClass-WeightedLoss

Finetuned
(2589)
this model

Dataset used to train swtb/XLM-RoBERTa-Base-Conll2003-English-NER-Finetune-BinaryClass-WeightedLoss

Evaluation results