File size: 4,902 Bytes
6cec8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: XLM-RoBERTa-Base-Conll2003-English-NER-Finetune-BinaryClass-WeightedLoss
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.952513966480447
- name: Recall
type: recall
value: 0.9660056657223796
- name: F1
type: f1
value: 0.9592123769338959
- name: Accuracy
type: accuracy
value: 0.9906536018089803
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLM-RoBERTa-Base-Conll2003-English-NER-Finetune-BinaryClass-WeightedLoss
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1110
- Precision: 0.9525
- Recall: 0.9660
- F1: 0.9592
- Accuracy: 0.9907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3351 | 0.3333 | 1441 | 0.1107 | 0.9131 | 0.9377 | 0.9252 | 0.9814 |
| 0.0357 | 0.6667 | 2882 | 0.0501 | 0.9500 | 0.9446 | 0.9473 | 0.9882 |
| 0.0239 | 1.0 | 4323 | 0.0662 | 0.9481 | 0.9479 | 0.9480 | 0.9883 |
| 0.0178 | 1.3333 | 5764 | 0.0667 | 0.9489 | 0.9603 | 0.9546 | 0.9899 |
| 0.0188 | 1.6667 | 7205 | 0.0712 | 0.9488 | 0.9575 | 0.9531 | 0.9895 |
| 0.018 | 2.0 | 8646 | 0.0605 | 0.9524 | 0.9559 | 0.9541 | 0.9902 |
| 0.0119 | 2.3333 | 10087 | 0.0840 | 0.9487 | 0.9662 | 0.9574 | 0.9901 |
| 0.0124 | 2.6667 | 11528 | 0.0758 | 0.9486 | 0.9641 | 0.9563 | 0.9901 |
| 0.0112 | 3.0 | 12969 | 0.0664 | 0.9559 | 0.9628 | 0.9593 | 0.9910 |
| 0.0082 | 3.3333 | 14410 | 0.0939 | 0.9483 | 0.9603 | 0.9543 | 0.9899 |
| 0.0083 | 3.6667 | 15851 | 0.0681 | 0.9555 | 0.9591 | 0.9573 | 0.9907 |
| 0.0077 | 4.0 | 17292 | 0.0686 | 0.9555 | 0.9572 | 0.9563 | 0.9902 |
| 0.0055 | 4.3333 | 18733 | 0.0852 | 0.9498 | 0.9642 | 0.9569 | 0.9905 |
| 0.005 | 4.6667 | 20174 | 0.0795 | 0.9530 | 0.9653 | 0.9591 | 0.9907 |
| 0.0049 | 5.0 | 21615 | 0.0871 | 0.9526 | 0.9614 | 0.9570 | 0.9900 |
| 0.0042 | 5.3333 | 23056 | 0.1054 | 0.9482 | 0.9658 | 0.9569 | 0.9898 |
| 0.0045 | 5.6667 | 24497 | 0.0764 | 0.9559 | 0.9598 | 0.9579 | 0.9905 |
| 0.0043 | 6.0 | 25938 | 0.0996 | 0.9510 | 0.9662 | 0.9585 | 0.9905 |
| 0.0037 | 6.3333 | 27379 | 0.0909 | 0.9539 | 0.9641 | 0.9590 | 0.9908 |
| 0.003 | 6.6667 | 28820 | 0.1010 | 0.9519 | 0.9639 | 0.9579 | 0.9905 |
| 0.003 | 7.0 | 30261 | 0.0944 | 0.9510 | 0.9632 | 0.9571 | 0.9905 |
| 0.0037 | 7.3333 | 31702 | 0.1041 | 0.9514 | 0.9642 | 0.9578 | 0.9903 |
| 0.0021 | 7.6667 | 33143 | 0.1048 | 0.9520 | 0.9658 | 0.9589 | 0.9907 |
| 0.0029 | 8.0 | 34584 | 0.1001 | 0.9526 | 0.9651 | 0.9588 | 0.9907 |
| 0.0019 | 8.3333 | 36025 | 0.1098 | 0.9525 | 0.9653 | 0.9588 | 0.9906 |
| 0.0019 | 8.6667 | 37466 | 0.1027 | 0.9538 | 0.9651 | 0.9594 | 0.9906 |
| 0.0019 | 9.0 | 38907 | 0.0990 | 0.9543 | 0.9653 | 0.9598 | 0.9908 |
| 0.0018 | 9.3333 | 40348 | 0.1086 | 0.9537 | 0.9655 | 0.9595 | 0.9907 |
| 0.0014 | 9.6667 | 41789 | 0.1090 | 0.9533 | 0.9658 | 0.9595 | 0.9907 |
| 0.0014 | 10.0 | 43230 | 0.1110 | 0.9525 | 0.9660 | 0.9592 | 0.9907 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|