nexon_jan_2023 / README.md
sxandie's picture
update model card README.md
62e4dde
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nexon_jan_2023
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: sroie
          type: sroie
          config: discharge
          split: test
          args: discharge
        metrics:
          - name: Precision
            type: precision
            value: 0.975609756097561
          - name: Recall
            type: recall
            value: 0.9302325581395349
          - name: F1
            type: f1
            value: 0.9523809523809524
          - name: Accuracy
            type: accuracy
            value: 0.9971428571428571

nexon_jan_2023

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0380
  • Precision: 0.9756
  • Recall: 0.9302
  • F1: 0.9524
  • Accuracy: 0.9971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 16.67 100 0.1998 0.6286 0.5116 0.5641 0.9571
No log 33.33 200 0.0616 0.9756 0.9302 0.9524 0.9971
No log 50.0 300 0.0439 0.9756 0.9302 0.9524 0.9971
No log 66.67 400 0.0404 0.9756 0.9302 0.9524 0.9971
0.1151 83.33 500 0.0389 0.9756 0.9302 0.9524 0.9971
0.1151 100.0 600 0.0380 0.9756 0.9302 0.9524 0.9971
0.1151 116.67 700 0.0378 0.9756 0.9302 0.9524 0.9971
0.1151 133.33 800 0.0379 0.9756 0.9302 0.9524 0.9971
0.1151 150.0 900 0.0378 0.9756 0.9302 0.9524 0.9971
0.009 166.67 1000 0.0378 0.9756 0.9302 0.9524 0.9971
0.009 183.33 1100 0.0378 0.9756 0.9302 0.9524 0.9971
0.009 200.0 1200 0.0379 0.9756 0.9302 0.9524 0.9971
0.009 216.67 1300 0.0379 0.9756 0.9302 0.9524 0.9971
0.009 233.33 1400 0.0379 0.9756 0.9302 0.9524 0.9971
0.0064 250.0 1500 0.0380 0.9756 0.9302 0.9524 0.9971

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.2.2
  • Tokenizers 0.13.2