system-admin's picture
Model save
2ee5473 verified
|
raw
history blame
3.21 kB
metadata
license: apache-2.0
base_model: NiharGupte/swin-tiny-patch4-window7-224-finetuned-student_six_classes
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: >-
      swin-tiny-patch4-window7-224-finetuned-student_six_classes-finetuned-student_six_classes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.83

swin-tiny-patch4-window7-224-finetuned-student_six_classes-finetuned-student_six_classes

This model is a fine-tuned version of NiharGupte/swin-tiny-patch4-window7-224-finetuned-student_six_classes on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4176
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.4943 0.78
No log 1.8462 6 0.4716 0.78
No log 2.7692 9 0.4725 0.81
0.3732 4.0 13 0.4678 0.78
0.3732 4.9231 16 0.4779 0.78
0.3732 5.8462 19 0.4564 0.79
0.3459 6.7692 22 0.4556 0.82
0.3459 8.0 26 0.4757 0.77
0.3459 8.9231 29 0.4773 0.77
0.3273 9.8462 32 0.4661 0.77
0.3273 10.7692 35 0.4518 0.79
0.3273 12.0 39 0.4405 0.81
0.2974 12.9231 42 0.4359 0.82
0.2974 13.8462 45 0.4298 0.82
0.2974 14.7692 48 0.4242 0.84
0.2874 16.0 52 0.4199 0.84
0.2874 16.9231 55 0.4185 0.83
0.2874 17.8462 58 0.4179 0.83
0.2737 18.4615 60 0.4176 0.83

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1