system-admin's picture
Model save
75f2059 verified
|
raw
history blame
3.01 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-student_two_classes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.82

swin-tiny-patch4-window7-224-finetuned-student_two_classes

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4187
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6951 1.0 13 0.4448 0.82
0.4292 2.0 26 0.4461 0.82
0.4246 3.0 39 0.4554 0.82
0.3983 4.0 52 0.4220 0.83
0.314 5.0 65 0.4429 0.83
0.4176 6.0 78 0.4006 0.82
0.2862 7.0 91 0.4145 0.84
0.3072 8.0 104 0.3847 0.83
0.3001 9.0 117 0.4043 0.87
0.2937 10.0 130 0.4026 0.82
0.2206 11.0 143 0.3972 0.83
0.2287 12.0 156 0.3840 0.86
0.3318 13.0 169 0.3741 0.84
0.232 14.0 182 0.3850 0.85
0.2277 15.0 195 0.3989 0.85
0.2253 16.0 208 0.4071 0.85
0.2463 17.0 221 0.4027 0.85
0.2496 18.0 234 0.4146 0.83
0.1969 19.0 247 0.4104 0.83
0.2279 20.0 260 0.4187 0.82

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1