metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-student_two_classes
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.76
swin-tiny-patch4-window7-224-finetuned-student_two_classes
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7437
- Accuracy: 0.76
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3845 | 1.0 | 13 | 0.6475 | 0.7 |
0.3466 | 2.0 | 26 | 0.6201 | 0.74 |
0.3832 | 3.0 | 39 | 0.8068 | 0.82 |
0.5344 | 4.0 | 52 | 0.6340 | 0.81 |
0.4912 | 5.0 | 65 | 0.6880 | 0.8 |
0.5093 | 6.0 | 78 | 0.6999 | 0.73 |
0.4109 | 7.0 | 91 | 0.7295 | 0.83 |
0.4383 | 8.0 | 104 | 0.7048 | 0.84 |
0.4534 | 9.0 | 117 | 0.6094 | 0.82 |
0.4684 | 10.0 | 130 | 0.5789 | 0.74 |
0.3442 | 11.0 | 143 | 0.7297 | 0.82 |
0.3236 | 12.0 | 156 | 0.7688 | 0.79 |
0.4645 | 13.0 | 169 | 0.6687 | 0.76 |
0.3532 | 14.0 | 182 | 0.7880 | 0.84 |
0.3394 | 15.0 | 195 | 0.7216 | 0.79 |
0.3311 | 16.0 | 208 | 0.7209 | 0.79 |
0.3367 | 17.0 | 221 | 0.6827 | 0.71 |
0.3673 | 18.0 | 234 | 0.7472 | 0.76 |
0.3024 | 19.0 | 247 | 0.7761 | 0.79 |
0.3624 | 20.0 | 260 | 0.7437 | 0.76 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1