system-admin's picture
Model save
9bdf0c8 verified
|
raw
history blame
3.01 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-student_two_classes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.76

swin-tiny-patch4-window7-224-finetuned-student_two_classes

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7437
  • Accuracy: 0.76

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3845 1.0 13 0.6475 0.7
0.3466 2.0 26 0.6201 0.74
0.3832 3.0 39 0.8068 0.82
0.5344 4.0 52 0.6340 0.81
0.4912 5.0 65 0.6880 0.8
0.5093 6.0 78 0.6999 0.73
0.4109 7.0 91 0.7295 0.83
0.4383 8.0 104 0.7048 0.84
0.4534 9.0 117 0.6094 0.82
0.4684 10.0 130 0.5789 0.74
0.3442 11.0 143 0.7297 0.82
0.3236 12.0 156 0.7688 0.79
0.4645 13.0 169 0.6687 0.76
0.3532 14.0 182 0.7880 0.84
0.3394 15.0 195 0.7216 0.79
0.3311 16.0 208 0.7209 0.79
0.3367 17.0 221 0.6827 0.71
0.3673 18.0 234 0.7472 0.76
0.3024 19.0 247 0.7761 0.79
0.3624 20.0 260 0.7437 0.76

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1