Slovene Part-of-speech (PoS) Tagging for Flair
This is a Slovene part-of-speech (PoS) tagger trained on the Slovenian UD Treebank using Flair NLP framework.
The tagger is trained using a combination of forward Slovene contextual string embeddings, backward Slovene contextual string embeddings and classic Slovene FastText embeddings.
F-score (micro): 94,96
The model is trained on a large (500+) number of different tags that described at https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html.
Based on Flair embeddings and LSTM-CRF.
Demo: How to use in Flair
Requires: Flair (pip install flair
)
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("tadejmagajna/flair-sl-pos")
# make example sentence
sentence = Sentence("Danes je lep dan.")
# predict PoS tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted PoS spans
print('The following PoS tags are found:')
# iterate over parts of speech and print
for tag in sentence.get_spans('pos'):
print(tag)
This prints out the following output:
Sentence: "Danes je lep dan ." [β Tokens: 5 β Token-Labels: "Danes <Rgp> je <Va-r3s-n> lep <Agpmsnn> dan <Ncmsn> . <Z>"]
The following PoS tags are found:
Span [1]: "Danes" [β Labels: Rgp (1.0)]
Span [2]: "je" [β Labels: Va-r3s-n (1.0)]
Span [3]: "lep" [β Labels: Agpmsnn (0.9999)]
Span [4]: "dan" [β Labels: Ncmsn (1.0)]
Span [5]: "." [β Labels: Z (1.0)]
Training: Script to train this model
The following standard Flair script was used to train this model:
from flair.data import Corpus
from flair.datasets import UD_SLOVENIAN
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. get the corpus
corpus: Corpus = UD_SLOVENIAN()
# 2. what tag do we want to predict?
tag_type = 'pos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize embeddings
embedding_types = [
WordEmbeddings('sl'),
FlairEmbeddings('sl-forward'),
FlairEmbeddings('sl-backward'),
]
embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger: SequenceTagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
# 7. start training
trainer.train('resources/taggers/pos-slovene',
train_with_dev=True,
max_epochs=150)
Cite
Please cite the following paper when using this model.
@inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} }
Issues?
The Flair issue tracker is available here.
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.