Edit model card

Slovene Part-of-speech (PoS) Tagging for Flair

This is a Slovene part-of-speech (PoS) tagger trained on the Slovenian UD Treebank using Flair NLP framework.

The tagger is trained using a combination of forward Slovene contextual string embeddings, backward Slovene contextual string embeddings and classic Slovene FastText embeddings.

F-score (micro): 94,96

The model is trained on a large (500+) number of different tags that described at https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html.

Based on Flair embeddings and LSTM-CRF.


Demo: How to use in Flair

Requires: Flair (pip install flair)

from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("tadejmagajna/flair-sl-pos")

# make example sentence
sentence = Sentence("Danes je lep dan.")

# predict PoS tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted PoS spans
print('The following PoS tags are found:')
# iterate over parts of speech and print
for tag in sentence.get_spans('pos'):
    print(tag)

This prints out the following output:

Sentence: "Danes je lep dan ."   [βˆ’ Tokens: 5  βˆ’ Token-Labels: "Danes <Rgp> je <Va-r3s-n> lep <Agpmsnn> dan <Ncmsn> . <Z>"]
The following PoS tags are found:
Span [1]: "Danes"   [βˆ’ Labels: Rgp (1.0)]
Span [2]: "je"   [βˆ’ Labels: Va-r3s-n (1.0)]
Span [3]: "lep"   [βˆ’ Labels: Agpmsnn (0.9999)]
Span [4]: "dan"   [βˆ’ Labels: Ncmsn (1.0)]
Span [5]: "."   [βˆ’ Labels: Z (1.0)]

Training: Script to train this model

The following standard Flair script was used to train this model:

from flair.data import Corpus
from flair.datasets import UD_SLOVENIAN
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings

# 1. get the corpus
corpus: Corpus = UD_SLOVENIAN()

# 2. what tag do we want to predict?
tag_type = 'pos'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize embeddings
embedding_types = [
    WordEmbeddings('sl'),
    FlairEmbeddings('sl-forward'),
    FlairEmbeddings('sl-backward'),
]
embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag_dictionary,
                                        tag_type=tag_type)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(tagger, corpus)

# 7. start training
trainer.train('resources/taggers/pos-slovene',
              train_with_dev=True,
              max_epochs=150)

Cite

Please cite the following paper when using this model. @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} }

Issues?

The Flair issue tracker is available here.

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.