Edit model card

This model is finetune on Japanese and English prompt

Usage:

Init model:

To use in code:

import torch
import peft
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained(
    "decapoda-research/llama-7b-hf"
    )

model = LlamaForCausalLM.from_pretrained(
    "tamdiep106/alpaca_lora_ja_en_emb-7b",
    load_in_8bit=False,
    device_map="auto",
    torch_dtype=torch.float16
    )

tokenizer.pad_token_id = 0  # unk. we want this to be different from the eos token
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2

Try this model

To try out this model, use this colab space GOOGLE COLAB LINK

Recommend Generation parameters:

  • temperature: 0.5~0.7

  • top p: 0.65~1.0

  • top k: 30~50

  • repeat penalty: 1.03~1.17

Japanese prompt:

instruction_input_JP = 'あなたはアシスタントです。以下に、タスクを説明する指示と、さらなるコンテキストを提供する入力を組み合わせます。 リクエストを適切に完了するレスポンスを作成します。'
instruction_no_input_JP = 'あなたはアシスタントです。以下はタスクを説明する指示です。 リクエストを適切に完了するレスポンスを作成します。'

prompt = """{}
### Instruction:
{}

### Response:"""

if input=='':
    prompt = prompt.format(
        instruction_no_input_JP, instruction
        )
else:
    prompt = prompt.format("{}\n\n### input:\n{}""").format(
        instruction_input_JP, instruction, input
        )

result: Japanese result

English prompt:

instruction_input_EN = 'You are an Assistant, below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.'
instruction_no_input_EN = 'You are an Assistant, below is an instruction that describes a task. Write a response that appropriately completes the request.'

prompt = """{}
### Instruction:
{}

### Response:"""

instruction = "write an email for my boss letting him know that i will resign from the position" #@param {type:"string"}
input = "" #@param {type:"string"}

if input=='':
    prompt = prompt.format(
        instruction_no_input_EN, instruction
        )
else:
    prompt = prompt.format("{}\n\n### input:\n{}""").format(
        instruction_input_EN, instruction, input
        )

result: English result

Use this code to decode output of model

for s in generation_output.sequences:
    result = tokenizer.decode(s).strip()
    result = result.replace(prompt, '')
    result = result.replace("<s>", "")
    result = result.replace("</s>", "")
    if result=='':
        print('No output')
        print(prompt)
        print(result)
        continue
    print('\nResponse: ')

    print(result)

Training:

Dataset:

  • Jumtra/oasst1_ja

  • Jumtra/jglue_jsquads_with_input

  • Jumtra/dolly_oast_jglue_ja

  • Aruno/guanaco_jp

  • yahma/alpaca-cleaned

  • databricks/databricks-dolly-15k

with about 750k entries, 2k entries used for evaluate process

Training setup

I trained this model on an instance from vast.ai

Result

  • Training loss

training loss chart

  • Eval loss chart

eval loss chart

Acknowledgement

Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train tamdiep106/alpaca_lora_ja_en_emb-7b