metadata
library_name: transformers
base_model: openai/clip-vit-large-patch14
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clip-vit-large-patch14-finetuned-clip-vit-large-patch14-mnist_linear_probe
results: []
clip-vit-large-patch14-finetuned-clip-vit-large-patch14-mnist_linear_probe
This model is a fine-tuned version of openai/clip-vit-large-patch14 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9687
- Accuracy: 0.9137
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4414 | 0.9953 | 105 | 2.3838 | 0.102 |
2.2431 | 2.0 | 211 | 2.2100 | 0.2698 |
2.1251 | 2.9953 | 316 | 2.0662 | 0.4987 |
2.0119 | 4.0 | 422 | 1.9232 | 0.6905 |
1.9134 | 4.9953 | 527 | 1.8080 | 0.7645 |
1.8314 | 6.0 | 633 | 1.7059 | 0.8053 |
1.7816 | 6.9953 | 738 | 1.6175 | 0.8215 |
1.7076 | 8.0 | 844 | 1.5373 | 0.845 |
1.6632 | 8.9953 | 949 | 1.4675 | 0.8592 |
1.6188 | 10.0 | 1055 | 1.4062 | 0.863 |
1.5606 | 10.9953 | 1160 | 1.3510 | 0.8718 |
1.5185 | 12.0 | 1266 | 1.3031 | 0.8718 |
1.5007 | 12.9953 | 1371 | 1.2591 | 0.881 |
1.4573 | 14.0 | 1477 | 1.2201 | 0.8833 |
1.4474 | 14.9953 | 1582 | 1.1841 | 0.8875 |
1.4308 | 16.0 | 1688 | 1.1524 | 0.8925 |
1.4091 | 16.9953 | 1793 | 1.1246 | 0.8943 |
1.3683 | 18.0 | 1899 | 1.0986 | 0.8985 |
1.365 | 18.9953 | 2004 | 1.0752 | 0.9042 |
1.3635 | 20.0 | 2110 | 1.0563 | 0.9033 |
1.3422 | 20.9953 | 2215 | 1.0389 | 0.9043 |
1.3248 | 22.0 | 2321 | 1.0231 | 0.9083 |
1.2961 | 22.9953 | 2426 | 1.0100 | 0.9093 |
1.3136 | 24.0 | 2532 | 0.9986 | 0.9107 |
1.3067 | 24.9953 | 2637 | 0.9897 | 0.911 |
1.2984 | 26.0 | 2743 | 0.9818 | 0.9115 |
1.3045 | 26.9953 | 2848 | 0.9759 | 0.9132 |
1.291 | 28.0 | 2954 | 0.9717 | 0.9132 |
1.2731 | 28.9953 | 3059 | 0.9692 | 0.9142 |
1.3034 | 29.8578 | 3150 | 0.9687 | 0.9137 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1