Edit model card

subcate-cs

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0762
  • Accuracy: 0.6868
  • F1: 0.7105
  • Precision: 0.7235
  • Recall: 0.6980

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 98 0.0743 0.6887 0.7074 0.7103 0.7044
No log 2.0 196 0.0753 0.6926 0.7141 0.7262 0.7025
No log 3.0 294 0.0751 0.6829 0.7078 0.7219 0.6942
No log 4.0 392 0.0774 0.6797 0.7009 0.7117 0.6903
No log 5.0 490 0.0762 0.6868 0.7105 0.7235 0.6980

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tangminhanh/subcate-cs

Finetuned
(106)
this model