Edit model card

gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5515
  • F1 Score: 0.8104
  • Precision: 0.8830
  • Recall: 0.7488
  • Accuracy: 0.8168
  • Auc: 0.9083
  • Prc: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.6889 0.0839 500 0.6417 0.7291 0.7593 0.7013 0.7277 0.7941 0.7841
0.6164 0.1679 1000 0.5381 0.7867 0.7507 0.8262 0.7658 0.8316 0.8141
0.5271 0.2518 1500 0.5026 0.8036 0.7353 0.8860 0.7737 0.8393 0.8118
0.5221 0.3357 2000 0.4936 0.8063 0.7676 0.8490 0.7868 0.8466 0.8365
0.4903 0.4197 2500 0.4795 0.8185 0.7613 0.8850 0.7948 0.8621 0.8476
0.4543 0.5036 3000 0.4643 0.8251 0.7756 0.8815 0.8047 0.8644 0.8371
0.4603 0.5875 3500 0.4686 0.8273 0.7670 0.8978 0.8041 0.8766 0.8565
0.4561 0.6715 4000 0.4631 0.8265 0.7954 0.8603 0.8113 0.8828 0.8755
0.4477 0.7554 4500 0.4512 0.8306 0.7798 0.8885 0.8106 0.8800 0.8707
0.4514 0.8393 5000 0.4408 0.8235 0.8139 0.8333 0.8133 0.8820 0.8795
0.4559 0.9233 5500 0.4425 0.8316 0.8087 0.8558 0.8188 0.8900 0.8760
0.4467 1.0072 6000 0.4247 0.8223 0.8348 0.8102 0.8170 0.8940 0.8817
0.4283 1.0912 6500 0.5164 0.8296 0.8175 0.8420 0.8192 0.8773 0.8659
0.4361 1.1751 7000 0.4595 0.8387 0.8072 0.8728 0.8245 0.8951 0.8886
0.443 1.2590 7500 0.4806 0.8396 0.7957 0.8885 0.8225 0.8809 0.8557
0.42 1.3430 8000 0.4259 0.8297 0.8202 0.8394 0.8198 0.8988 0.8939
0.4233 1.4269 8500 0.4146 0.8225 0.8404 0.8053 0.8183 0.9047 0.8980
0.4175 1.5108 9000 0.4482 0.8420 0.7790 0.9162 0.8203 0.8960 0.8710
0.4078 1.5948 9500 0.4259 0.8426 0.8192 0.8673 0.8306 0.9049 0.8949
0.4071 1.6787 10000 0.4400 0.8432 0.8106 0.8786 0.8292 0.8929 0.8537
0.4279 1.7626 10500 0.4670 0.8368 0.8443 0.8294 0.8309 0.8996 0.8766
0.4278 1.8466 11000 0.4540 0.8468 0.7851 0.9190 0.8262 0.8796 0.8380
0.419 1.9305 11500 0.4370 0.8502 0.8095 0.8953 0.8351 0.8920 0.8528
0.4077 2.0144 12000 0.4640 0.8499 0.7902 0.9194 0.8303 0.8821 0.8342
0.3942 2.0984 12500 0.4793 0.8488 0.8334 0.8648 0.8390 0.9079 0.8876
0.4104 2.1823 13000 0.4884 0.8460 0.8504 0.8416 0.8398 0.8969 0.8530
0.3959 2.2662 13500 0.5016 0.8484 0.8428 0.8542 0.8405 0.9054 0.8851
0.4071 2.3502 14000 0.5515 0.8104 0.8830 0.7488 0.8168 0.9083 0.8965

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0
Downloads last month
15
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tanoManzo/gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC

Finetuned
(10)
this model