nucleotide-transformer-2.5b-1000g_ft_BioS11_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-2.5b-1000g on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8465
- F1 Score: 0.8645
- Precision: 0.8626
- Recall: 0.8663
- Accuracy: 0.8601
- Auc: 0.9345
- Prc: 0.9260
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.4487 | 0.2753 | 500 | 0.3603 | 0.8644 | 0.7946 | 0.9476 | 0.8468 | 0.9261 | 0.9126 |
0.4104 | 0.5507 | 1000 | 0.4305 | 0.8635 | 0.7795 | 0.9679 | 0.8424 | 0.9284 | 0.9178 |
0.3731 | 0.8260 | 1500 | 0.3860 | 0.8672 | 0.7792 | 0.9775 | 0.8457 | 0.9362 | 0.9270 |
0.3218 | 1.1013 | 2000 | 0.4403 | 0.8745 | 0.8300 | 0.9241 | 0.8634 | 0.9357 | 0.9256 |
0.2396 | 1.3767 | 2500 | 0.5610 | 0.8717 | 0.8505 | 0.8941 | 0.8645 | 0.9359 | 0.9257 |
0.224 | 1.6520 | 3000 | 0.5519 | 0.8766 | 0.8473 | 0.9080 | 0.8683 | 0.9359 | 0.9266 |
0.2195 | 1.9273 | 3500 | 0.5169 | 0.8698 | 0.8647 | 0.8749 | 0.8650 | 0.9387 | 0.9319 |
0.0819 | 2.2026 | 4000 | 0.8884 | 0.8759 | 0.8351 | 0.9209 | 0.8656 | 0.9353 | 0.9257 |
0.0481 | 2.4780 | 4500 | 0.8794 | 0.8773 | 0.8160 | 0.9487 | 0.8634 | 0.9342 | 0.9248 |
0.0369 | 2.7533 | 5000 | 0.8465 | 0.8645 | 0.8626 | 0.8663 | 0.8601 | 0.9345 | 0.9260 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
- Downloads last month
- 2