tanoManzo's picture
End of training
f59122c verified
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-50m-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-v2-50m-multi-species_ft_BioS73_1kbpHG19_DHSs_H3K27AC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nucleotide-transformer-v2-50m-multi-species_ft_BioS73_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-50m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-50m-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5982
- F1 Score: 0.8659
- Precision: 0.8638
- Recall: 0.8680
- Accuracy: 0.8565
- Auc: 0.9221
- Prc: 0.9108
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.4842 | 0.1864 | 500 | 0.4405 | 0.8399 | 0.7690 | 0.9253 | 0.8118 | 0.8896 | 0.8855 |
| 0.3895 | 0.3727 | 1000 | 0.3708 | 0.8565 | 0.8186 | 0.8980 | 0.8394 | 0.9145 | 0.9127 |
| 0.3812 | 0.5591 | 1500 | 0.3732 | 0.8650 | 0.8468 | 0.8841 | 0.8528 | 0.9200 | 0.9179 |
| 0.3785 | 0.7454 | 2000 | 0.3683 | 0.8681 | 0.8566 | 0.8799 | 0.8572 | 0.9226 | 0.9183 |
| 0.352 | 0.9318 | 2500 | 0.3957 | 0.8678 | 0.8312 | 0.9078 | 0.8524 | 0.9233 | 0.9208 |
| 0.3234 | 1.1182 | 3000 | 0.4323 | 0.8701 | 0.8222 | 0.9239 | 0.8528 | 0.9261 | 0.9220 |
| 0.2959 | 1.3045 | 3500 | 0.3964 | 0.8749 | 0.8237 | 0.9330 | 0.8576 | 0.9231 | 0.9151 |
| 0.3007 | 1.4909 | 4000 | 0.3848 | 0.8715 | 0.8514 | 0.8925 | 0.8595 | 0.9247 | 0.9188 |
| 0.3001 | 1.6772 | 4500 | 0.4423 | 0.8790 | 0.8411 | 0.9204 | 0.8647 | 0.9227 | 0.9129 |
| 0.3094 | 1.8636 | 5000 | 0.3997 | 0.8737 | 0.8525 | 0.8959 | 0.8617 | 0.9288 | 0.9235 |
| 0.2533 | 2.0499 | 5500 | 0.5849 | 0.8611 | 0.8719 | 0.8506 | 0.8535 | 0.9290 | 0.9247 |
| 0.2049 | 2.2363 | 6000 | 0.5982 | 0.8659 | 0.8638 | 0.8680 | 0.8565 | 0.9221 | 0.9108 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0