File size: 1,652 Bytes
7e115d6
 
 
 
 
 
 
 
 
 
 
9944c52
 
 
 
7e115d6
 
 
 
 
 
9944c52
7e115d6
 
 
 
 
 
 
 
 
9944c52
 
7e115d6
9944c52
7e115d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9944c52
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language:
- en
metrics:
- accuracy
- AUC ROC
- precision
- recall
tags:
- biology
- chemistry
- therapeutic science
- drug design
- drug development
- therapeutics
library_name: tdc
license: bsd-2-clause
---

## Dataset description

As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier (BBB) is the protective layer that blocks most foreign drugs. Thus the ability of a drug to penetrate the barrier to deliver to the site of action forms a crucial challenge in developing drugs for the central nervous system.

## Task description

Binary classification. Given a drug SMILES string, predict the activity of BBB.

## Dataset statistics

Total: 1,975 drugs

## Dataset split
Random split with 70% training, 10% validation, and 20% testing

To load the dataset in TDC, type

```python
from tdc.single_pred import ADME
data = ADME(name = 'BBB_Martins')
```
## Model description
CNN is applying Convolutional Neural Network on SMILES string fingerprint. Model is tuned with 100 runs using Ax platform.
To load the pre-trained model, type

```python
from tdc import tdc_hf_interface
tdc_hf = tdc_hf_interface("BBB_Martins-CNN")
# load deeppurpose model from this repo
dp_model = tdc_hf_herg.load_deeppurpose('./data')
tdc_hf.predict_deeppurpose(dp_model, ['YOUR SMILES STRING'])
```

## References
* Dataset entry in Therapeutics Data Commons, https://tdcommons.ai/single_pred_tasks/adme/#bbb-blood-brain-barrier-martins-et-al
* Martins, Ines Filipa, et al. “A Bayesian approach to in silico blood-brain barrier penetration modeling.” Journal of chemical information and modeling 52.6 (2012): 1686-1697.