tech4betterlife's picture
update model card README.md
7b00c92
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
  - precision
model-index:
  - name: distilbert-base-uncased_emotion_ft_0416
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9365
          - name: F1
            type: f1
            value: 0.9367095468423076
          - name: Precision
            type: precision
            value: 0.9084962660186648

distilbert-base-uncased_emotion_ft_0416

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1520
  • Accuracy: 0.9365
  • F1: 0.9367
  • Precision: 0.9085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision
0.8004 1.0 250 0.2687 0.9185 0.9179 0.8974
0.2055 2.0 500 0.1749 0.929 0.9292 0.9032
0.1386 3.0 750 0.1596 0.933 0.9332 0.9093
0.1128 4.0 1000 0.1520 0.9365 0.9367 0.9085

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2