Edit model card

swin-tiny-patch4-window7-224-fine_tune

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5958
  • Accuracy: 0.8782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.175 0.96 16 4.7967 0.1345
4.1158 1.97 33 2.9977 0.3824
2.0676 2.99 50 1.5415 0.6807
1.4395 4.0 67 0.9951 0.8151
0.9396 4.96 83 0.8235 0.8277
0.7456 5.97 100 0.7195 0.8361
0.666 6.99 117 0.6406 0.8613
0.5893 8.0 134 0.6045 0.8739
0.4704 8.96 150 0.6016 0.8655
0.4475 9.97 167 0.5958 0.8782
0.3937 10.99 184 0.5856 0.8782
0.3327 12.0 201 0.5761 0.8782
0.3277 12.96 217 0.5758 0.8782
0.2928 13.97 234 0.5754 0.8739
0.2545 14.99 251 0.5711 0.8739
0.2657 16.0 268 0.5851 0.8739
0.2457 16.96 284 0.5805 0.8655
0.2359 17.97 301 0.5762 0.8697
0.2849 18.99 318 0.5792 0.8739
0.223 19.1 320 0.5792 0.8739

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
7
Safetensors
Model size
27.7M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tectonatech/swin-tiny-patch4-window7-224-fine_tune

Finetuned
(477)
this model

Evaluation results