morriszms's picture
Update README.md
36e638c verified
metadata
license: other
tags:
  - merge
  - mergekit
  - lazymergekit
  - TensorBlock
  - GGUF
base_model: mlabonne/ChimeraLlama-3-8B-v2
model-index:
  - name: ChimeraLlama-3-8B-v2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 44.69
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/ChimeraLlama-3-8B-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 28.48
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/ChimeraLlama-3-8B-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 8.31
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/ChimeraLlama-3-8B-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.7
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/ChimeraLlama-3-8B-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 5.25
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/ChimeraLlama-3-8B-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 28.54
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/ChimeraLlama-3-8B-v2
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

mlabonne/ChimeraLlama-3-8B-v2 - GGUF

This repo contains GGUF format model files for mlabonne/ChimeraLlama-3-8B-v2.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
ChimeraLlama-3-8B-v2-Q2_K.gguf Q2_K 2.961 GB smallest, significant quality loss - not recommended for most purposes
ChimeraLlama-3-8B-v2-Q3_K_S.gguf Q3_K_S 3.413 GB very small, high quality loss
ChimeraLlama-3-8B-v2-Q3_K_M.gguf Q3_K_M 3.743 GB very small, high quality loss
ChimeraLlama-3-8B-v2-Q3_K_L.gguf Q3_K_L 4.025 GB small, substantial quality loss
ChimeraLlama-3-8B-v2-Q4_0.gguf Q4_0 4.341 GB legacy; small, very high quality loss - prefer using Q3_K_M
ChimeraLlama-3-8B-v2-Q4_K_S.gguf Q4_K_S 4.370 GB small, greater quality loss
ChimeraLlama-3-8B-v2-Q4_K_M.gguf Q4_K_M 4.583 GB medium, balanced quality - recommended
ChimeraLlama-3-8B-v2-Q5_0.gguf Q5_0 5.215 GB legacy; medium, balanced quality - prefer using Q4_K_M
ChimeraLlama-3-8B-v2-Q5_K_S.gguf Q5_K_S 5.215 GB large, low quality loss - recommended
ChimeraLlama-3-8B-v2-Q5_K_M.gguf Q5_K_M 5.339 GB large, very low quality loss - recommended
ChimeraLlama-3-8B-v2-Q6_K.gguf Q6_K 6.143 GB very large, extremely low quality loss
ChimeraLlama-3-8B-v2-Q8_0.gguf Q8_0 7.954 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/ChimeraLlama-3-8B-v2-GGUF --include "ChimeraLlama-3-8B-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/ChimeraLlama-3-8B-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'