MicroLlama-GGUF / README.md
morriszms's picture
Update README.md
fc7c68a verified
|
raw
history blame
6.98 kB
metadata
language:
  - en
license: apache-2.0
library_name: transformers
datasets:
  - cerebras/SlimPajama-627B
metrics:
  - accuracy
base_model: keeeeenw/MicroLlama
tags:
  - TensorBlock
  - GGUF
model-index:
  - name: MicroLlama
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 19.85
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=keeeeenw/MicroLlama
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 2.83
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=keeeeenw/MicroLlama
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=keeeeenw/MicroLlama
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.45
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=keeeeenw/MicroLlama
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.79
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=keeeeenw/MicroLlama
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=keeeeenw/MicroLlama
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

keeeeenw/MicroLlama - GGUF

This repo contains GGUF format model files for keeeeenw/MicroLlama.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
MicroLlama-Q2_K.gguf Q2_K 0.117 GB smallest, significant quality loss - not recommended for most purposes
MicroLlama-Q3_K_S.gguf Q3_K_S 0.135 GB very small, high quality loss
MicroLlama-Q3_K_M.gguf Q3_K_M 0.145 GB very small, high quality loss
MicroLlama-Q3_K_L.gguf Q3_K_L 0.155 GB small, substantial quality loss
MicroLlama-Q4_0.gguf Q4_0 0.168 GB legacy; small, very high quality loss - prefer using Q3_K_M
MicroLlama-Q4_K_S.gguf Q4_K_S 0.169 GB small, greater quality loss
MicroLlama-Q4_K_M.gguf Q4_K_M 0.177 GB medium, balanced quality - recommended
MicroLlama-Q5_0.gguf Q5_0 0.200 GB legacy; medium, balanced quality - prefer using Q4_K_M
MicroLlama-Q5_K_S.gguf Q5_K_S 0.200 GB large, low quality loss - recommended
MicroLlama-Q5_K_M.gguf Q5_K_M 0.204 GB large, very low quality loss - recommended
MicroLlama-Q6_K.gguf Q6_K 0.233 GB very large, extremely low quality loss
MicroLlama-Q8_0.gguf Q8_0 0.302 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/MicroLlama-GGUF --include "MicroLlama-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/MicroLlama-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'