Velara-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
2fec36a verified
|
raw
history blame
4.38 kB
metadata
license: cc-by-nc-nd-4.0
language:
  - en
library_name: transformers
pipeline_tag: text-generation
tags:
  - starling
  - mistral
  - llama-2
  - TensorBlock
  - GGUF
base_model: Delcos/Velara
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Delcos/Velara - GGUF

This repo contains GGUF format model files for Delcos/Velara.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Velara-Q2_K.gguf Q2_K 3.953 GB smallest, significant quality loss - not recommended for most purposes
Velara-Q3_K_S.gguf Q3_K_S 4.606 GB very small, high quality loss
Velara-Q3_K_M.gguf Q3_K_M 5.130 GB very small, high quality loss
Velara-Q3_K_L.gguf Q3_K_L 5.582 GB small, substantial quality loss
Velara-Q4_0.gguf Q4_0 5.998 GB legacy; small, very high quality loss - prefer using Q3_K_M
Velara-Q4_K_S.gguf Q4_K_S 6.041 GB small, greater quality loss
Velara-Q4_K_M.gguf Q4_K_M 6.376 GB medium, balanced quality - recommended
Velara-Q5_0.gguf Q5_0 7.308 GB legacy; medium, balanced quality - prefer using Q4_K_M
Velara-Q5_K_S.gguf Q5_K_S 7.308 GB large, low quality loss - recommended
Velara-Q5_K_M.gguf Q5_K_M 7.503 GB large, very low quality loss - recommended
Velara-Q6_K.gguf Q6_K 8.700 GB very large, extremely low quality loss
Velara-Q8_0.gguf Q8_0 11.269 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Velara-GGUF --include "Velara-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Velara-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'