Text Generation
GGUF
TensorBlock
GGUF
Eval Results
Inference Endpoints
bloomz-560m-GGUF / README.md
morriszms's picture
Update README.md
3f260ee verified
|
raw
history blame
19.5 kB
metadata
datasets:
  - bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
  - ak
  - ar
  - as
  - bm
  - bn
  - ca
  - code
  - en
  - es
  - eu
  - fon
  - fr
  - gu
  - hi
  - id
  - ig
  - ki
  - kn
  - lg
  - ln
  - ml
  - mr
  - ne
  - nso
  - ny
  - or
  - pa
  - pt
  - rn
  - rw
  - sn
  - st
  - sw
  - ta
  - te
  - tn
  - ts
  - tum
  - tw
  - ur
  - vi
  - wo
  - xh
  - yo
  - zh
  - zu
programming_language:
  - C
  - C++
  - C#
  - Go
  - Java
  - JavaScript
  - Lua
  - PHP
  - Python
  - Ruby
  - Rust
  - Scala
  - TypeScript
pipeline_tag: text-generation
widget:
  - text: >-
      一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the
      previous review as positive, neutral or negative?
    example_title: zh-en sentiment
  - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
    example_title: zh-zh sentiment
  - text: Suggest at least five related search terms to "Mạng neural nhân tạo".
    example_title: vi-en query
  - text: >-
      Proposez au moins cinq mots clés concernant «Réseau de neurones
      artificiels».
    example_title: fr-fr query
  - text: >-
      Explain in a sentence in Telugu what is backpropagation in neural
      networks.
    example_title: te-en qa
  - text: Why is the sky blue?
    example_title: en-en qa
  - text: >-
      Write a fairy tale about a troll saving a princess from a dangerous
      dragon. The fairy tale is a masterpiece that has achieved praise worldwide
      and its moral is "Heroes Come in All Shapes and Sizes". Story (in
      Spanish):
    example_title: es-en fable
  - text: >-
      Write a fable about wood elves living in a forest that is suddenly invaded
      by ogres. The fable is a masterpiece that has achieved praise worldwide
      and its moral is "Violence is the last refuge of the incompetent". Fable
      (in Hindi):
    example_title: hi-en fable
base_model: bigscience/bloomz-560m
tags:
  - TensorBlock
  - GGUF
model-index:
  - name: bloomz-560m
    results:
      - task:
          type: Coreference resolution
        dataset:
          name: Winogrande XL (xl)
          type: winogrande
          config: xl
          split: validation
          revision: a80f460359d1e9a67c006011c94de42a8759430c
        metrics:
          - type: Accuracy
            value: 52.41
      - task:
          type: Coreference resolution
        dataset:
          name: XWinograd (en)
          type: Muennighoff/xwinograd
          config: en
          split: test
          revision: 9dd5ea5505fad86b7bedad667955577815300cee
        metrics:
          - type: Accuracy
            value: 51.01
      - task:
          type: Coreference resolution
        dataset:
          name: XWinograd (fr)
          type: Muennighoff/xwinograd
          config: fr
          split: test
          revision: 9dd5ea5505fad86b7bedad667955577815300cee
        metrics:
          - type: Accuracy
            value: 51.81
      - task:
          type: Coreference resolution
        dataset:
          name: XWinograd (jp)
          type: Muennighoff/xwinograd
          config: jp
          split: test
          revision: 9dd5ea5505fad86b7bedad667955577815300cee
        metrics:
          - type: Accuracy
            value: 52.03
      - task:
          type: Coreference resolution
        dataset:
          name: XWinograd (pt)
          type: Muennighoff/xwinograd
          config: pt
          split: test
          revision: 9dd5ea5505fad86b7bedad667955577815300cee
        metrics:
          - type: Accuracy
            value: 53.99
      - task:
          type: Coreference resolution
        dataset:
          name: XWinograd (ru)
          type: Muennighoff/xwinograd
          config: ru
          split: test
          revision: 9dd5ea5505fad86b7bedad667955577815300cee
        metrics:
          - type: Accuracy
            value: 53.97
      - task:
          type: Coreference resolution
        dataset:
          name: XWinograd (zh)
          type: Muennighoff/xwinograd
          config: zh
          split: test
          revision: 9dd5ea5505fad86b7bedad667955577815300cee
        metrics:
          - type: Accuracy
            value: 54.76
      - task:
          type: Natural language inference
        dataset:
          name: ANLI (r1)
          type: anli
          config: r1
          split: validation
          revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
        metrics:
          - type: Accuracy
            value: 33.4
      - task:
          type: Natural language inference
        dataset:
          name: ANLI (r2)
          type: anli
          config: r2
          split: validation
          revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
        metrics:
          - type: Accuracy
            value: 33.4
      - task:
          type: Natural language inference
        dataset:
          name: ANLI (r3)
          type: anli
          config: r3
          split: validation
          revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
        metrics:
          - type: Accuracy
            value: 33.5
      - task:
          type: Natural language inference
        dataset:
          name: SuperGLUE (cb)
          type: super_glue
          config: cb
          split: validation
          revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
        metrics:
          - type: Accuracy
            value: 53.57
      - task:
          type: Natural language inference
        dataset:
          name: SuperGLUE (rte)
          type: super_glue
          config: rte
          split: validation
          revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
        metrics:
          - type: Accuracy
            value: 67.15
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (ar)
          type: xnli
          config: ar
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 44.46
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (bg)
          type: xnli
          config: bg
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 39.76
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (de)
          type: xnli
          config: de
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 39.36
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (el)
          type: xnli
          config: el
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 40.96
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (en)
          type: xnli
          config: en
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 46.43
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (es)
          type: xnli
          config: es
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 44.98
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (fr)
          type: xnli
          config: fr
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 45.54
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (hi)
          type: xnli
          config: hi
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 41.81
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (ru)
          type: xnli
          config: ru
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 39.64
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (sw)
          type: xnli
          config: sw
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 38.35
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (th)
          type: xnli
          config: th
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 35.5
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (tr)
          type: xnli
          config: tr
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 37.31
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (ur)
          type: xnli
          config: ur
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 38.96
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (vi)
          type: xnli
          config: vi
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 44.74
      - task:
          type: Natural language inference
        dataset:
          name: XNLI (zh)
          type: xnli
          config: zh
          split: validation
          revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
        metrics:
          - type: Accuracy
            value: 44.66
      - task:
          type: Program synthesis
        dataset:
          name: HumanEval
          type: openai_humaneval
          config: None
          split: test
          revision: e8dc562f5de170c54b5481011dd9f4fa04845771
        metrics:
          - type: Pass@1
            value: 2.18
          - type: Pass@10
            value: 4.11
          - type: Pass@100
            value: 9
      - task:
          type: Sentence completion
        dataset:
          name: StoryCloze (2016)
          type: story_cloze
          config: '2016'
          split: validation
          revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
        metrics:
          - type: Accuracy
            value: 60.29
      - task:
          type: Sentence completion
        dataset:
          name: SuperGLUE (copa)
          type: super_glue
          config: copa
          split: validation
          revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
        metrics:
          - type: Accuracy
            value: 52
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (et)
          type: xcopa
          config: et
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 53
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (ht)
          type: xcopa
          config: ht
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 49
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (id)
          type: xcopa
          config: id
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 57
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (it)
          type: xcopa
          config: it
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 52
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (qu)
          type: xcopa
          config: qu
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 55
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (sw)
          type: xcopa
          config: sw
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 56
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (ta)
          type: xcopa
          config: ta
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 58
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (th)
          type: xcopa
          config: th
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 58
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (tr)
          type: xcopa
          config: tr
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 61
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (vi)
          type: xcopa
          config: vi
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 61
      - task:
          type: Sentence completion
        dataset:
          name: XCOPA (zh)
          type: xcopa
          config: zh
          split: validation
          revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
        metrics:
          - type: Accuracy
            value: 61
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (ar)
          type: Muennighoff/xstory_cloze
          config: ar
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 54.4
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (es)
          type: Muennighoff/xstory_cloze
          config: es
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 56.45
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (eu)
          type: Muennighoff/xstory_cloze
          config: eu
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 50.56
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (hi)
          type: Muennighoff/xstory_cloze
          config: hi
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 55.79
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (id)
          type: Muennighoff/xstory_cloze
          config: id
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 57.84
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (my)
          type: Muennighoff/xstory_cloze
          config: my
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 47.05
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (ru)
          type: Muennighoff/xstory_cloze
          config: ru
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 53.14
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (sw)
          type: Muennighoff/xstory_cloze
          config: sw
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 51.36
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (te)
          type: Muennighoff/xstory_cloze
          config: te
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 54.86
      - task:
          type: Sentence completion
        dataset:
          name: XStoryCloze (zh)
          type: Muennighoff/xstory_cloze
          config: zh
          split: validation
          revision: 8bb76e594b68147f1a430e86829d07189622b90d
        metrics:
          - type: Accuracy
            value: 56.52
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

bigscience/bloomz-560m - GGUF

This repo contains GGUF format model files for bigscience/bloomz-560m.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
bloomz-560m-Q2_K.gguf Q2_K 0.392 GB smallest, significant quality loss - not recommended for most purposes
bloomz-560m-Q3_K_S.gguf Q3_K_S 0.433 GB very small, high quality loss
bloomz-560m-Q3_K_M.gguf Q3_K_M 0.458 GB very small, high quality loss
bloomz-560m-Q3_K_L.gguf Q3_K_L 0.472 GB small, substantial quality loss
bloomz-560m-Q4_0.gguf Q4_0 0.502 GB legacy; small, very high quality loss - prefer using Q3_K_M
bloomz-560m-Q4_K_S.gguf Q4_K_S 0.503 GB small, greater quality loss
bloomz-560m-Q4_K_M.gguf Q4_K_M 0.523 GB medium, balanced quality - recommended
bloomz-560m-Q5_0.gguf Q5_0 0.567 GB legacy; medium, balanced quality - prefer using Q4_K_M
bloomz-560m-Q5_K_S.gguf Q5_K_S 0.567 GB large, low quality loss - recommended
bloomz-560m-Q5_K_M.gguf Q5_K_M 0.583 GB large, very low quality loss - recommended
bloomz-560m-Q6_K.gguf Q6_K 0.636 GB very large, extremely low quality loss
bloomz-560m-Q8_0.gguf Q8_0 0.820 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/bloomz-560m-GGUF --include "bloomz-560m-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/bloomz-560m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'