Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
google/datagemma-rag-27b-it - GGUF
This repo contains GGUF format model files for google/datagemma-rag-27b-it.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
datagemma-rag-27b-it-Q2_K.gguf | Q2_K | 10.450 GB | smallest, significant quality loss - not recommended for most purposes |
datagemma-rag-27b-it-Q3_K_S.gguf | Q3_K_S | 12.169 GB | very small, high quality loss |
datagemma-rag-27b-it-Q3_K_M.gguf | Q3_K_M | 13.425 GB | very small, high quality loss |
datagemma-rag-27b-it-Q3_K_L.gguf | Q3_K_L | 14.519 GB | small, substantial quality loss |
datagemma-rag-27b-it-Q4_0.gguf | Q4_0 | 15.628 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
datagemma-rag-27b-it-Q4_K_S.gguf | Q4_K_S | 15.739 GB | small, greater quality loss |
datagemma-rag-27b-it-Q4_K_M.gguf | Q4_K_M | 16.645 GB | medium, balanced quality - recommended |
datagemma-rag-27b-it-Q5_0.gguf | Q5_0 | 18.884 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
datagemma-rag-27b-it-Q5_K_S.gguf | Q5_K_S | 18.884 GB | large, low quality loss - recommended |
datagemma-rag-27b-it-Q5_K_M.gguf | Q5_K_M | 19.408 GB | large, very low quality loss - recommended |
datagemma-rag-27b-it-Q6_K.gguf | Q6_K | 22.344 GB | very large, extremely low quality loss |
datagemma-rag-27b-it-Q8_0.gguf | Q8_0 | 28.937 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/datagemma-rag-27b-it-GGUF --include "datagemma-rag-27b-it-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/datagemma-rag-27b-it-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.