GGUF
TensorBlock
GGUF
Inference Endpoints
Edit model card
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

realPCH/kosolra_SFT_DPO_v0 - GGUF

This repo contains GGUF format model files for realPCH/kosolra_SFT_DPO_v0.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
kosolra_SFT_DPO_v0-Q2_K.gguf Q2_K 3.799 GB smallest, significant quality loss - not recommended for most purposes
kosolra_SFT_DPO_v0-Q3_K_S.gguf Q3_K_S 4.421 GB very small, high quality loss
kosolra_SFT_DPO_v0-Q3_K_M.gguf Q3_K_M 4.916 GB very small, high quality loss
kosolra_SFT_DPO_v0-Q3_K_L.gguf Q3_K_L 5.339 GB small, substantial quality loss
kosolra_SFT_DPO_v0-Q4_0.gguf Q4_0 5.740 GB legacy; small, very high quality loss - prefer using Q3_K_M
kosolra_SFT_DPO_v0-Q4_K_S.gguf Q4_K_S 5.783 GB small, greater quality loss
kosolra_SFT_DPO_v0-Q4_K_M.gguf Q4_K_M 6.103 GB medium, balanced quality - recommended
kosolra_SFT_DPO_v0-Q5_0.gguf Q5_0 6.982 GB legacy; medium, balanced quality - prefer using Q4_K_M
kosolra_SFT_DPO_v0-Q5_K_S.gguf Q5_K_S 6.982 GB large, low quality loss - recommended
kosolra_SFT_DPO_v0-Q5_K_M.gguf Q5_K_M 7.169 GB large, very low quality loss - recommended
kosolra_SFT_DPO_v0-Q6_K.gguf Q6_K 8.301 GB very large, extremely low quality loss
kosolra_SFT_DPO_v0-Q8_0.gguf Q8_0 10.751 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/kosolra_SFT_DPO_v0-GGUF --include "kosolra_SFT_DPO_v0-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/kosolra_SFT_DPO_v0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
180
GGUF
Model size
10.9B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for tensorblock/kosolra_SFT_DPO_v0-GGUF

Quantized
(1)
this model

Datasets used to train tensorblock/kosolra_SFT_DPO_v0-GGUF