metadata
language:
- en
tags:
- pytorch
- causal-lm
- pythia
- TensorBlock
- GGUF
license: apache-2.0
datasets:
- EleutherAI/pile
base_model: EleutherAI/pythia-160m
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
EleutherAI/pythia-160m - GGUF
This repo contains GGUF format model files for EleutherAI/pythia-160m.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
pythia-160m-Q2_K.gguf | Q2_K | 0.073 GB | smallest, significant quality loss - not recommended for most purposes |
pythia-160m-Q3_K_S.gguf | Q3_K_S | 0.081 GB | very small, high quality loss |
pythia-160m-Q3_K_M.gguf | Q3_K_M | 0.088 GB | very small, high quality loss |
pythia-160m-Q3_K_L.gguf | Q3_K_L | 0.092 GB | small, substantial quality loss |
pythia-160m-Q4_0.gguf | Q4_0 | 0.096 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
pythia-160m-Q4_K_S.gguf | Q4_K_S | 0.097 GB | small, greater quality loss |
pythia-160m-Q4_K_M.gguf | Q4_K_M | 0.102 GB | medium, balanced quality - recommended |
pythia-160m-Q5_0.gguf | Q5_0 | 0.111 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
pythia-160m-Q5_K_S.gguf | Q5_K_S | 0.111 GB | large, low quality loss - recommended |
pythia-160m-Q5_K_M.gguf | Q5_K_M | 0.115 GB | large, very low quality loss - recommended |
pythia-160m-Q6_K.gguf | Q6_K | 0.126 GB | very large, extremely low quality loss |
pythia-160m-Q8_0.gguf | Q8_0 | 0.163 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/pythia-160m-GGUF --include "pythia-160m-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/pythia-160m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'