GGUF
Japanese
English
TensorBlock
GGUF
Inference Endpoints
conversational
shisa-7b-v1-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
3162a8b verified
|
raw
history blame
4.56 kB
---
license: apache-2.0
language:
- ja
- en
datasets:
- augmxnt/ultra-orca-boros-en-ja-v1
- Open-Orca/SlimOrca
- augmxnt/shisa-en-ja-dpo-v1
tags:
- TensorBlock
- GGUF
base_model: augmxnt/shisa-7b-v1
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## augmxnt/shisa-7b-v1 - GGUF
This repo contains GGUF format model files for [augmxnt/shisa-7b-v1](https://huggingface.co/augmxnt/shisa-7b-v1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
<s>[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [shisa-7b-v1-Q2_K.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q2_K.gguf) | Q2_K | 2.921 GB | smallest, significant quality loss - not recommended for most purposes |
| [shisa-7b-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q3_K_S.gguf) | Q3_K_S | 3.370 GB | very small, high quality loss |
| [shisa-7b-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q3_K_M.gguf) | Q3_K_M | 3.700 GB | very small, high quality loss |
| [shisa-7b-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q3_K_L.gguf) | Q3_K_L | 3.982 GB | small, substantial quality loss |
| [shisa-7b-v1-Q4_0.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q4_0.gguf) | Q4_0 | 4.294 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [shisa-7b-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q4_K_S.gguf) | Q4_K_S | 4.323 GB | small, greater quality loss |
| [shisa-7b-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q4_K_M.gguf) | Q4_K_M | 4.535 GB | medium, balanced quality - recommended |
| [shisa-7b-v1-Q5_0.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q5_0.gguf) | Q5_0 | 5.164 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [shisa-7b-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q5_K_S.gguf) | Q5_K_S | 5.164 GB | large, low quality loss - recommended |
| [shisa-7b-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q5_K_M.gguf) | Q5_K_M | 5.288 GB | large, very low quality loss - recommended |
| [shisa-7b-v1-Q6_K.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q6_K.gguf) | Q6_K | 6.088 GB | very large, extremely low quality loss |
| [shisa-7b-v1-Q8_0.gguf](https://huggingface.co/tensorblock/shisa-7b-v1-GGUF/blob/main/shisa-7b-v1-Q8_0.gguf) | Q8_0 | 7.884 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/shisa-7b-v1-GGUF --include "shisa-7b-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/shisa-7b-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```