|
--- |
|
license: mit |
|
base_model: pyannote/segmentation-3.0 |
|
tags: |
|
- speaker-diarization |
|
- speaker-segmentation |
|
- generated_from_trainer |
|
datasets: |
|
- diarizers-community/callhome |
|
model-index: |
|
- name: speaker-segmentation-fine-tuned-callhome-eng-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# speaker-segmentation-fine-tuned-callhome-eng-2 |
|
|
|
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4666 |
|
- Der: 0.1814 |
|
- False Alarm: 0.0552 |
|
- Missed Detection: 0.0739 |
|
- Confusion: 0.0523 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| |
|
| 0.4548 | 1.0 | 181 | 0.4943 | 0.1966 | 0.0564 | 0.0811 | 0.0590 | |
|
| 0.4171 | 2.0 | 362 | 0.4845 | 0.1951 | 0.0644 | 0.0754 | 0.0552 | |
|
| 0.396 | 3.0 | 543 | 0.4633 | 0.1856 | 0.0502 | 0.0825 | 0.0529 | |
|
| 0.3856 | 4.0 | 724 | 0.4609 | 0.1843 | 0.0571 | 0.0739 | 0.0534 | |
|
| 0.3693 | 5.0 | 905 | 0.4639 | 0.1821 | 0.0531 | 0.0761 | 0.0528 | |
|
| 0.3634 | 6.0 | 1086 | 0.4610 | 0.1821 | 0.0588 | 0.0716 | 0.0517 | |
|
| 0.3655 | 7.0 | 1267 | 0.4638 | 0.1827 | 0.0566 | 0.0740 | 0.0521 | |
|
| 0.3608 | 8.0 | 1448 | 0.4603 | 0.1814 | 0.0567 | 0.0732 | 0.0515 | |
|
| 0.3545 | 9.0 | 1629 | 0.4645 | 0.1805 | 0.0530 | 0.0761 | 0.0514 | |
|
| 0.3508 | 10.0 | 1810 | 0.4666 | 0.1814 | 0.0552 | 0.0739 | 0.0523 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.19.1 |
|
|