wav2vec2-multiple-medical-2-1
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2340
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.7848 | 0.56 | 1500 | 4.7981 |
3.4426 | 1.12 | 3000 | 3.3244 |
3.1079 | 1.68 | 4500 | 3.0999 |
3.0034 | 2.24 | 6000 | 2.9647 |
2.0403 | 2.8 | 7500 | 1.5829 |
1.2797 | 3.36 | 9000 | 0.9095 |
1.052 | 3.92 | 10500 | 0.6498 |
0.8326 | 4.48 | 12000 | 0.5418 |
0.7443 | 5.04 | 13500 | 0.4615 |
0.6949 | 5.6 | 15000 | 0.4191 |
0.6096 | 6.16 | 16500 | 0.3817 |
0.5699 | 6.72 | 18000 | 0.3545 |
0.5718 | 7.28 | 19500 | 0.3439 |
0.5159 | 7.84 | 21000 | 0.3243 |
0.4808 | 8.4 | 22500 | 0.3112 |
0.4979 | 8.96 | 24000 | 0.2975 |
0.4271 | 9.52 | 25500 | 0.2948 |
0.4364 | 10.08 | 27000 | 0.2818 |
0.4205 | 10.64 | 28500 | 0.2770 |
0.418 | 11.2 | 30000 | 0.2747 |
0.3915 | 11.76 | 31500 | 0.2695 |
0.4121 | 12.32 | 33000 | 0.2596 |
0.4057 | 12.88 | 34500 | 0.2627 |
0.363 | 13.44 | 36000 | 0.2617 |
0.3767 | 14.0 | 37500 | 0.2567 |
0.3804 | 14.56 | 39000 | 0.2512 |
0.3537 | 15.12 | 40500 | 0.2505 |
0.3195 | 15.68 | 42000 | 0.2508 |
0.311 | 16.24 | 43500 | 0.2523 |
0.3089 | 16.8 | 45000 | 0.2462 |
0.3121 | 17.36 | 46500 | 0.2463 |
0.3549 | 17.92 | 48000 | 0.2479 |
0.3111 | 18.48 | 49500 | 0.2422 |
0.3228 | 19.04 | 51000 | 0.2414 |
0.2936 | 19.6 | 52500 | 0.2415 |
0.28 | 20.16 | 54000 | 0.2411 |
0.3174 | 20.72 | 55500 | 0.2354 |
0.2735 | 21.28 | 57000 | 0.2335 |
0.3498 | 21.84 | 58500 | 0.2352 |
0.2958 | 22.4 | 60000 | 0.2341 |
0.3009 | 22.96 | 61500 | 0.2328 |
0.2869 | 23.52 | 63000 | 0.2352 |
0.2644 | 24.08 | 64500 | 0.2343 |
0.2692 | 24.64 | 66000 | 0.2346 |
0.3376 | 25.2 | 67500 | 0.2339 |
0.2522 | 25.76 | 69000 | 0.2340 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.4.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 9