update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-multiple-medical-2-1
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-multiple-medical-2-1
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.2340
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 1e-05
|
37 |
+
- train_batch_size: 2
|
38 |
+
- eval_batch_size: 2
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_ratio: 0.1
|
43 |
+
- num_epochs: 30
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 5.7848 | 0.56 | 1500 | 4.7981 |
|
51 |
+
| 3.4426 | 1.12 | 3000 | 3.3244 |
|
52 |
+
| 3.1079 | 1.68 | 4500 | 3.0999 |
|
53 |
+
| 3.0034 | 2.24 | 6000 | 2.9647 |
|
54 |
+
| 2.0403 | 2.8 | 7500 | 1.5829 |
|
55 |
+
| 1.2797 | 3.36 | 9000 | 0.9095 |
|
56 |
+
| 1.052 | 3.92 | 10500 | 0.6498 |
|
57 |
+
| 0.8326 | 4.48 | 12000 | 0.5418 |
|
58 |
+
| 0.7443 | 5.04 | 13500 | 0.4615 |
|
59 |
+
| 0.6949 | 5.6 | 15000 | 0.4191 |
|
60 |
+
| 0.6096 | 6.16 | 16500 | 0.3817 |
|
61 |
+
| 0.5699 | 6.72 | 18000 | 0.3545 |
|
62 |
+
| 0.5718 | 7.28 | 19500 | 0.3439 |
|
63 |
+
| 0.5159 | 7.84 | 21000 | 0.3243 |
|
64 |
+
| 0.4808 | 8.4 | 22500 | 0.3112 |
|
65 |
+
| 0.4979 | 8.96 | 24000 | 0.2975 |
|
66 |
+
| 0.4271 | 9.52 | 25500 | 0.2948 |
|
67 |
+
| 0.4364 | 10.08 | 27000 | 0.2818 |
|
68 |
+
| 0.4205 | 10.64 | 28500 | 0.2770 |
|
69 |
+
| 0.418 | 11.2 | 30000 | 0.2747 |
|
70 |
+
| 0.3915 | 11.76 | 31500 | 0.2695 |
|
71 |
+
| 0.4121 | 12.32 | 33000 | 0.2596 |
|
72 |
+
| 0.4057 | 12.88 | 34500 | 0.2627 |
|
73 |
+
| 0.363 | 13.44 | 36000 | 0.2617 |
|
74 |
+
| 0.3767 | 14.0 | 37500 | 0.2567 |
|
75 |
+
| 0.3804 | 14.56 | 39000 | 0.2512 |
|
76 |
+
| 0.3537 | 15.12 | 40500 | 0.2505 |
|
77 |
+
| 0.3195 | 15.68 | 42000 | 0.2508 |
|
78 |
+
| 0.311 | 16.24 | 43500 | 0.2523 |
|
79 |
+
| 0.3089 | 16.8 | 45000 | 0.2462 |
|
80 |
+
| 0.3121 | 17.36 | 46500 | 0.2463 |
|
81 |
+
| 0.3549 | 17.92 | 48000 | 0.2479 |
|
82 |
+
| 0.3111 | 18.48 | 49500 | 0.2422 |
|
83 |
+
| 0.3228 | 19.04 | 51000 | 0.2414 |
|
84 |
+
| 0.2936 | 19.6 | 52500 | 0.2415 |
|
85 |
+
| 0.28 | 20.16 | 54000 | 0.2411 |
|
86 |
+
| 0.3174 | 20.72 | 55500 | 0.2354 |
|
87 |
+
| 0.2735 | 21.28 | 57000 | 0.2335 |
|
88 |
+
| 0.3498 | 21.84 | 58500 | 0.2352 |
|
89 |
+
| 0.2958 | 22.4 | 60000 | 0.2341 |
|
90 |
+
| 0.3009 | 22.96 | 61500 | 0.2328 |
|
91 |
+
| 0.2869 | 23.52 | 63000 | 0.2352 |
|
92 |
+
| 0.2644 | 24.08 | 64500 | 0.2343 |
|
93 |
+
| 0.2692 | 24.64 | 66000 | 0.2346 |
|
94 |
+
| 0.3376 | 25.2 | 67500 | 0.2339 |
|
95 |
+
| 0.2522 | 25.76 | 69000 | 0.2340 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.26.1
|
101 |
+
- Pytorch 2.4.1+cu121
|
102 |
+
- Datasets 2.20.0
|
103 |
+
- Tokenizers 0.13.3
|