Edit model card

Wav2Vec2-XLS-TR

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Common Voice 17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
5.5445 0.2757 400 1.2160
0.7341 0.5513 800 0.6683
0.5195 0.8270 1200 0.5313
0.4561 1.1027 1600 0.4837
0.4016 1.3784 2000 0.4725
0.3945 1.6540 2400 0.4570
0.3756 1.9297 2800 0.4284
0.3341 2.2054 3200 0.4283
0.3316 2.4810 3600 0.3945
0.3333 2.7567 4000 0.4283
0.3224 3.0324 4400 0.3993
0.2924 3.3081 4800 0.4216
0.3012 3.5837 5200 0.3729
0.2889 3.8594 5600 0.3962
0.2767 4.1351 6000 0.4037
0.2714 4.4108 6400 0.3740
0.2721 4.6864 6800 0.3821
0.2673 4.9621 7200 0.3580
0.2407 5.2378 7600 0.3758
0.2525 5.5134 8000 0.4067
0.2477 5.7891 8400 0.3675
0.2433 6.0648 8800 0.3653
0.229 6.3405 9200 0.3485
0.2326 6.6161 9600 0.3674
0.2288 6.8918 10000 0.3664
0.2199 7.1675 10400 0.3656
0.2094 7.4431 10800 0.3389
0.2191 7.7188 11200 0.3446
0.2149 7.9945 11600 0.3489
0.1967 8.2702 12000 0.3482
0.2042 8.5458 12400 0.3464
0.2043 8.8215 12800 0.3517
0.1919 9.0972 13200 0.3408
0.1844 9.3728 13600 0.3465
0.1906 9.6485 14000 0.3349
0.1868 9.9242 14400 0.3282
0.1732 10.1999 14800 0.3604
0.1715 10.4755 15200 0.3413
0.1734 10.7512 15600 0.3309
0.1785 11.0269 16000 0.3351
0.1643 11.3025 16400 0.3326
0.1603 11.5782 16800 0.3205
0.1662 11.8539 17200 0.3332
0.1561 12.1296 17600 0.3311
0.1512 12.4052 18000 0.3322
0.1509 12.6809 18400 0.3227
0.1516 12.9566 18800 0.3338
0.1493 13.2323 19200 0.3439
0.1426 13.5079 19600 0.3447
0.143 13.7836 20000 0.3299
0.1398 14.0593 20400 0.3273
0.1351 14.3349 20800 0.3281
0.1384 14.6106 21200 0.3333
0.1335 14.8863 21600 0.3311
0.1291 15.1620 22000 0.3230
0.1259 15.4376 22400 0.3301
0.1294 15.7133 22800 0.3446
0.1269 15.9890 23200 0.3271
0.1196 16.2646 23600 0.3204
0.1166 16.5403 24000 0.3031
0.12 16.8160 24400 0.3258
0.1163 17.0917 24800 0.3408
0.1101 17.3673 25200 0.3246
0.1142 17.6430 25600 0.3201
0.1121 17.9187 26000 0.3198
0.1044 18.1943 26400 0.3441
0.105 18.4700 26800 0.3441
0.1032 18.7457 27200 0.3252
0.104 19.0214 27600 0.3170
0.0968 19.2970 28000 0.3363
0.0946 19.5727 28400 0.3100
0.0974 19.8484 28800 0.3128
0.0889 20.1241 29200 0.3325
0.0887 20.3997 29600 0.3276
0.0891 20.6754 30000 0.3253
0.0937 20.9511 30400 0.3270
0.0854 21.2267 30800 0.3294
0.0864 21.5024 31200 0.3352
0.0864 21.7781 31600 0.3279
0.0829 22.0538 32000 0.3245
0.0799 22.3294 32400 0.3329
0.0811 22.6051 32800 0.3295
0.0777 22.8808 33200 0.3204
0.074 23.1564 33600 0.3286
0.0762 23.4321 34000 0.3326
0.0765 23.7078 34400 0.3061
0.0745 23.9835 34800 0.3313
0.0702 24.2591 35200 0.3131
0.0684 24.5348 35600 0.3236
0.0689 24.8105 36000 0.3152
0.0716 25.0861 36400 0.3272
0.0609 25.3618 36800 0.3294
0.0607 25.6375 37200 0.3366
0.0624 25.9132 37600 0.3215
0.0614 26.1888 38000 0.3236
0.0599 26.4645 38400 0.3321
0.0608 26.7402 38800 0.3311
0.0558 27.0159 39200 0.3368
0.0589 27.2915 39600 0.3217
0.0573 27.5672 40000 0.3320
0.0546 27.8429 40400 0.3316
0.0526 28.1185 40800 0.3285
0.0501 28.3942 41200 0.3287
0.0515 28.6699 41600 0.3261
0.0507 28.9456 42000 0.3316
0.0539 29.2212 42400 0.3285
0.0489 29.4969 42800 0.3319
0.053 29.7726 43200 0.3285

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tgrhn/wav2vec2-turkish-5

Finetuned
(440)
this model