Mistral-7B SQL GGUF
A GGUF-quantized version of Mistral-7B fine-tuned for SQL query generation. Optimized for CPU inference with clean SQL outputs.
Model Details
- Base Model: Mistral-7B-Instruct-v0.3
- Quantization: Q8_0
- Context Length: 32768 tokens (default from base model)
- Format: GGUF (V3 latest)
- Size: 7.17 GB
- Parameters: 7.25B
- Architecture: Llama
- Use Case: Text to SQL conversion
Usage
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
# Download and setup
model_path = hf_hub_download(
repo_id="tharun66/mistral-sql-gguf",
filename="mistral_sql_q4.gguf"
)
# Initialize model
llm = Llama(
model_path=model_path,
n_ctx=512,
n_threads=4,
verbose=False
)
def generate_sql(question):
prompt = f"""### Task: Convert to SQL
### Question: {question}
### SQL:"""
response = llm(
prompt,
max_tokens=128,
temperature=0.7,
stop=["system", "user", "assistant", "###"],
echo=False
)
return response['choices'][0]['text'].strip()
# Example
question = "Show all active users"
sql = generate_sql(question)
print(sql)
# Output: SELECT * FROM users WHERE status = 'active'
- Downloads last month
- 54