|
---
|
|
tags:
|
|
- autotrain
|
|
- text-generation-inference
|
|
- text-generation
|
|
- peft
|
|
library_name: transformers
|
|
base_model: Qwen/Qwen2-0.5B-Instruct
|
|
widget:
|
|
- messages:
|
|
- role: user
|
|
content: What is your favorite condiment?
|
|
license: other
|
|
datasets:
|
|
- blancsw/oasst2_top1_chat_format
|
|
---
|
|
|
|
# Model Trained Using AutoTrain
|
|
|
|
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
|
|
|
|
# Usage
|
|
|
|
```python
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
model_path = "PATH_TO_THIS_REPO"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
device_map="auto",
|
|
torch_dtype='auto'
|
|
).eval()
|
|
|
|
# Prompt content: "hi"
|
|
messages = [
|
|
{"role": "user", "content": "hi"}
|
|
]
|
|
|
|
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
|
|
output_ids = model.generate(input_ids.to('cuda'))
|
|
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
|
|
|
|
# Model response: "Hello! How can I assist you today?"
|
|
print(response)
|
|
``` |