Edit model card

Chatty-McChatterson-3-mini-128k

image/png

Model Details

Model Name: Chatty-McChatterson-3-mini-128k Base Model: microsoft/Phi-3-mini-128k-instruct
Fine-tuning Method: Supervised Fine-Tuning (SFT)
Dataset: ultrachat_200k
Training Data: 12884 conversations selected for being 512 input tokens or less Training Duration: 4 hours
Hardware: Nvidia RTX A4500
Epochs: 3

Training Procedure

This model was fine-tuned to provide better instructions on code.

The training was conducted using PEFT and SFTTrainer on select conversations from the Ultra Chat 200k dataset. Training was completed in 3 epochs (19326 steps) over a span of 4 hours on an Nvidia A4500 GPU.

The dataset comprised of a filterd list of rows from the Ultra Chat 200k dataset, where the prompt template was 512 tokens or less.

Intended Use

This model is designed to improve the overall chat experience and response quality.

Getting Started

Instruct Template

<|system|>
{system_message} <|end|>
<|user|>
{Prompt) <|end|>
<|assistant|>

Transfromers

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name_or_path = "thesven/Chatty-McChatterson-3-mini-128k"

# BitsAndBytesConfig for loading the model in 4-bit precision
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    device_map="auto",
    trust_remote_code=False,
    revision="main",
    quantization_config=bnb_config
)
model.pad_token = model.config.eos_token_id

prompt_template = '''
<|user|>
What is the name of the big tower in Toronto?.<|end|>
<|assistant|>
'''

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=256)

generated_text = tokenizer.decode(output[0, len(input_ids[0]):], skip_special_tokens=True)
print(generated_text)
Downloads last month
10
Safetensors
Model size
3.82B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train thesven/Chatty-McChatterson-3-mini-128k

Collection including thesven/Chatty-McChatterson-3-mini-128k