metadata
language:
- la
license: mit
tags:
- generated_from_trainer
datasets:
- thiagolira/LatinYoutube
metrics:
- wer
base_model: facebook/w2v-bert-2.0
model-index:
- name: CiceroASR
results: []
CiceroASR
This model is a fine-tuned version of facebook/w2v-bert-2.0 for the transcription of Classical Latin!
Example from the Aeneid: Transcription: arma virumque cano (Of arms and men I sing)
Example from Genesis: Transcription (little error there): creavit deus chaelum et terram (In the beggining God created the heaven and the earth)
It achieves the following results on the evaluation set of my dataset Latin Youtube:
- Loss: 0.5026
- Wer: 0.1651
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.9864 | 1.14 | 50 | 2.4639 | 1.0 |
0.7134 | 2.27 | 100 | 0.4891 | 0.3601 |
0.5196 | 3.41 | 150 | 0.5267 | 0.3022 |
0.3779 | 4.55 | 200 | 0.4407 | 0.2369 |
0.3818 | 5.68 | 250 | 0.4516 | 0.2360 |
0.3 | 6.82 | 300 | 0.4365 | 0.2379 |
0.3252 | 7.95 | 350 | 0.4238 | 0.2183 |
0.2736 | 9.09 | 400 | 0.4609 | 0.2034 |
0.1588 | 10.23 | 450 | 0.4007 | 0.2239 |
0.1223 | 11.36 | 500 | 0.4892 | 0.1987 |
0.0859 | 12.5 | 550 | 0.5393 | 0.1772 |
0.0575 | 13.64 | 600 | 0.4629 | 0.1744 |
0.0464 | 14.77 | 650 | 0.5026 | 0.1651 |
Framework versions
- Transformers 4.38.0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2