lukeleeai's picture
End of training
e3e8e61
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: t5-base_cola_moe_ex9_sp0_05_ar0_0_mare_mlp
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: cola
          split: validation
          args: cola
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0

t5-base_cola_moe_ex9_sp0_05_ar0_0_mare_mlp

This model is a fine-tuned version of t5-base on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9386
  • Accuracy: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2328 0.09 25 1.1651 0.7383
0.764 0.19 50 0.7678 0.7287
0.6109 0.28 75 0.6739 0.7718
0.5633 0.37 100 0.5954 0.7661
0.5133 0.47 125 0.5870 0.7814
0.5224 0.56 150 0.5766 0.7785
0.4876 0.65 175 0.5574 0.7881
0.5157 0.75 200 0.5760 0.7881
0.4745 0.84 225 0.5327 0.7824
0.4612 0.93 250 0.5576 0.7900
0.4491 1.03 275 0.5174 0.7881
0.358 1.12 300 0.6065 0.7900
0.3363 1.21 325 0.6949 0.7919
0.4065 1.31 350 0.5112 0.7987
0.4044 1.4 375 0.5681 0.8063
0.3888 1.49 400 0.5422 0.7996
0.4992 1.59 425 0.5294 0.7900
0.4231 1.68 450 0.5221 0.8044
0.4912 1.77 475 0.4984 0.8130
0.4951 1.87 500 0.5109 0.8015
0.3117 1.96 525 0.5640 0.8044
0.3822 2.05 550 0.5524 0.8130
0.3886 2.15 575 0.6092 0.8121
0.305 2.24 600 0.5380 0.8111
0.4815 2.33 625 0.5478 0.8111
0.3298 2.43 650 0.5298 0.8150
0.3533 2.52 675 0.5043 0.8140
0.3706 2.61 700 0.5810 0.8178

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.11.6