lukeleeai's picture
End of training
873a7ae
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: t5-base_sst2_dense_epochs-6_exp_size_16
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9185779816513762

t5-base_sst2_dense_epochs-6_exp_size_16

This model is a fine-tuned version of t5-base on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2618
  • Accuracy: 0.9186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6583 0.02 50 0.6411 0.6193
0.328 0.05 100 0.2547 0.9106
0.263 0.07 150 0.2392 0.9140
0.2337 0.1 200 0.2295 0.9197
0.216 0.12 250 0.2372 0.9255
0.2194 0.14 300 0.2485 0.9186
0.2214 0.17 350 0.2209 0.9220
0.2094 0.19 400 0.2270 0.9220
0.226 0.21 450 0.2156 0.9209
0.1687 0.24 500 0.2618 0.9186
0.1758 0.26 550 0.2279 0.9186
0.2362 0.29 600 0.2314 0.9220
0.2323 0.31 650 0.2442 0.9197
0.1809 0.33 700 0.2065 0.9300
0.2871 0.36 750 0.2135 0.9289
0.16 0.38 800 0.2115 0.9243
0.1438 0.4 850 0.2287 0.9255
0.1732 0.43 900 0.2153 0.9255
0.1847 0.45 950 0.3193 0.9278
0.257 0.48 1000 0.3176 0.9289
0.127 0.5 1050 0.1962 0.9300
0.1791 0.52 1100 0.1928 0.9346
0.2533 0.55 1150 0.1890 0.9335
0.0762 0.57 1200 0.2866 0.9335
0.1358 0.59 1250 0.4125 0.9335
0.1385 0.62 1300 0.4090 0.9323
0.184 0.64 1350 0.5092 0.9369
0.1213 0.67 1400 0.5033 0.9404
0.1597 0.69 1450 0.5152 0.9381
0.1179 0.71 1500 0.3992 0.9381
0.1689 0.74 1550 0.5163 0.9381
0.1678 0.76 1600 0.5114 0.9404
0.1673 0.78 1650 0.2786 0.9369

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.14.1